Apple
Platform Security

May 2022

N

Apple Platform Security

Contents

Apple platform security

Introduction to Apple platform security

Hardware security and biometrics

Hardware security overview
Apple SoC security

Secure Enclave

Face ID and Touch ID

Hardware microphone disconnect

Express Cards with power reserve

System security

System security overview

Secure boot

Signed system volume security in iOS, iPadOS and macOS
Secure software updates

Operating system integrity

Additional macOS system security capabilities

System security for watchOS

Random number generation

Apple Security Research Device

Encryption and Data Protection

Encryption and Data Protection overview
Passcodes and passwords

Data Protection

FileVault

How Apple protects users’ personal data

Digital signing and encryption

o1

© 00 N N

18
26
27

28
28
28
51
53
55
57
68
71
72

74

74
74
77
89
92
95

App security 97

App security overview 97
App security in iOS and iPadOS 98
App security in macOS 103
Secure features in the Notes app 108
Secure features in the Shortcuts app 109
Services security 110
Services security overview 110
Apple ID and Managed Apple ID 110
iCloud 112
Passcode and password management 121
Apple Pay 130
Using Apple Wallet 144
iMessage 154
Secure Apple Messages for Business 157
FaceTime security 157
Find My 158
Continuity 161
Network security 165
Network security overview 165
TLS security 165
IPv6 security 166
Virtual private network (VPN) security 167
Wi-Fi security 168
Bluetooth security 172
Ultra Wideband security in iOS 173
Single sign-on 173
AirDrop security 174
Wi-Fi password sharing security on iPhone and iPad 176
Firewall security in macOS 176
Developer kit security 177
Developer kit security overview 177
HomeKit security 177
SiriKit security for iOS, iPadOS and watchOS 182
DriverKit security for macOS 183
ReplayKit security in iOS and iPadOS 183
ARKit security in iOS and iPadOS 185

Apple Platform Security 3

Apple Platform Security

Secure device management

Secure device management overview
Pairing model security for iPhone and iPad
Mobile device management

Apple Configurator security

Screen Time security

Glossary

Document revision history

Document revision history

Copyright

186

186
186
187
195
196

198

203
203

210

Apple Platform Security

Apple platform security

Introduction to Apple platform security

Apple designs security into the core of its platforms. Building on the experience of creating
one of the world’s most advanced mobile operating systems, Apple has created security
architectures that address the unique requirements of mobile, watch, desktop and home.

Every Apple device combines hardware, software and services designed to work together
for maximum security and a transparent user experience in service of the ultimate goal

of keeping personal information safe. For example, Apple-designed silicon and security
hardware powers critical security features. And software protections work to keep the
operating system and third-party apps protected. Finally, services provide a mechanism
for secure and timely software updates, power a protected app ecosystem, and facilitate
secure communications and payments. As a result, Apple devices protect not only the
device and its data but the entire ecosystem, including everything users do locally, on
networks and with key internet services.

Just as we design our products to be simple, intuitive and capable, we design them to

be secure. Key security features, such as hardware-based device encryption, can't be
disabled by mistake. Other features, such as Face ID and Touch ID, enhance the user
experience by making it simpler and more intuitive to secure the device. And because many
of these features are enabled by default, users or IT departments don't need to perform
extensive configurations.

This documentation provides details about how security technology and features are
implemented within Apple platforms. It also helps organisations combine Apple platform
security technology and features with their own policies and procedures to meet their
specific security needs.

The content is organised into the following topic areas:

- Hardware security and biometrics: The silicon and hardware that forms the
foundation for security on Apple devices, including Apple silicon, the Secure Enclave,
cryptographic engines, Face ID and Touch ID

- System security: The integrated hardware and software functions that provide for the
safe boot, update and ongoing operation of Apple operating systems

- Encryption and Data Protection: The architecture and design that protects user data
if the device is lost or stolen or if an unauthorised person or process attempts to use or
modify it

- App security: The software and services that provide a safe app ecosystem and enable
apps to run securely and without compromising platform integrity

- Services security: Apple's services for identification, password management,
payments, communications and finding lost devices

- Network security: Industry-standard networking protocols that provide secure
authentication and encryption of data in transmission

- Developer kit security: Framework “kits" for secure and private management of home and
health, as well as extension of Apple device and service capabilities to third-party apps

- Secure device management: Methods that allow management of Apple devices, help
prevent unauthorised use and enable remote wipe if a device is lost or stolen

A commitment to security

Apple is committed to helping protect customers with leading privacy and security
technologies — designed to safeguard personal information — and comprehensive
methods, to help protect corporate data in an enterprise environment. Apple rewards
researchers for the work they do to uncover vulnerabilities by offering the Apple
Security Bounty. Details of the programme and bounty categories are available at
https://developer.apple.com/security-bounty/.

We maintain a dedicated security team to support all Apple products. The team provides
security auditing and testing for products, both under development and released. The
Apple team also provides security tools and training and actively monitors for threats and
reports of new security issues. Apple is a member of the Forum of Incident Response and
Security Teams (FIRST).

Apple continues to push the boundaries of what's possible in security and privacy. It uses
custom silicon across its product lineup — from Apple Watch to iPhone and iPad, to the
T2 Security Chip and Apple silicon in Mac — powering not only efficient computation but
also security. For example, Apple silicon forms the foundation for secure boot, Face ID
and Touch ID, and Data Protection. In addition, security features on devices powered by
Apple silicon — such as Kernel Integrity Protection, Pointer Authentication Codes and Fast
Permission Restrictions — help thwart common types of cyberattack. Therefore, even if
attacker code somehow executes, the damage it can do is dramatically reduced.

To make the most of the extensive security features built into our platforms, organisations
are encouraged to review their IT and security policies to ensure that they are taking full
advantage of the layers of security technology offered by these platforms.

To learn more about reporting issues to Apple and subscribing to security notifications,
see Report a security or privacy vulnerability.

Apple believes privacy is a fundamental human right and has numerous built-in controls
and options that allow users to decide how and when apps use their information,

as well as what information is being used. To learn more about Apple’s approach

to privacy, privacy controls on Apple devices and the Apple privacy policy, see
https://www.apple.com/uk/privacy.

Note: Unless otherwise noted, this documentation covers the following operating system
versions: i0S 15.4, iPadOS 15.4, macOS 12.3, tvOS 15.4 and watchOS 8.5.

Apple Platform Security 6

https://developer.apple.com/security-bounty/
https://www.first.org
https://www.first.org
https://support.apple.com/HT201220
https://www.apple.com/uk/privacy

Apple Platform Security

Hardware security and biometrics

Hardware security overview

For software to be secure, it must rest on hardware that has security built in. That's

why Apple devices — using iOS, iPadOS, macOS, tvOS and watchOS — have security
capabilities designed into silicon. These capabilities include a CPU that powers system
security features as well as additional silicon that's dedicated to security functions.
Security-focused hardware follows the principle of supporting limited and discretely
defined functions in order to minimise attack surface. Such components include a Boot
ROM, which forms a hardware root of trust for secure boot, dedicated AES engines

for efficient and secure encryption and decryption, and a Secure Enclave. The Secure
Enclave is a system on chip (SoC) that is included on all recent iPhone, iPad, Apple Watch,
Apple TV and HomePod devices, and on a Mac with Apple silicon as well as those with the
Apple T2 Security Chip. The Secure Enclave itself follows the same principle of design as
the SoC does, containing its own discrete Boot ROM and AES engine. The Secure Enclave
also provides the foundation for the secure generation and storage of the keys necessary
for encrypting data at rest, and it protects and evaluates the biometric data for Face ID and
Touch ID.

Storage encryption must be fast and efficient. At the same time, it can’t expose the data
(or keying material) it uses to establish cryptographic keying relationships. The AES
hardware engine solves this problem by performing fast inline encryption and decryption
as files are written or read. A special channel from the Secure Enclave provides necessary
keying material to the AES engine without exposing this information to the Application
Processor (or CPU) or overall operating system. This helps ensure that the Apple Data
Protection and FileVault technologies protect users’ files without exposing long-lived
encryption keys.

Apple has designed secure boot to protect the lowest levels of software against tampering
and to allow only trusted operating system software from Apple to load at startup. Secure
boot begins in immutable code called the Boot ROM, which is laid down during Apple SoC
fabrication and is known as the hardware root of trust. On Mac computers with a T2 chip,
trust for macOS secure boot begins with the T2. (Both the T2 chip and the Secure Enclave
also execute their own secure boot processes using their own separate Boot ROM — this is
an exact analogue to how the A-series and M1 family of chips boot securely.)

The Secure Enclave also processes face and fingerprint data from Face ID and Touch ID
sensors in Apple devices. This provides secure authentication while keeping user biometric
data private and secure. It also allows users to benefit from the security of longer and
more complex passcodes and passwords with, in many situations, the convenience of swift
authentication for access or purchases.

Apple Platform Security

Apple SoC security

Apple-designed silicon forms a common architecture across all Apple products and now
powers Mac as well as iPhone, iPad, Apple TV and Apple Watch. For over a decade, Apple's
world-class silicon design team has been building and refining Apple systems on chip
(SoCs). The result is a scalable architecture designed for all devices that leads the industry
in security capabilities. This common foundation for security features is only possible from
a company that designs its own silicon to work with its software.

Apple silicon has been designed and fabricated to specifically enable the system security
features detailed below.

Feature A10 A11, S3 A12, S4 A13, S5 A14, A15, M1 Family
S6, S7

Kernel Q (V] Q Q (V] Q

Integrity
Protection

Fast 9 o o 9 o

Permission
Restrictions

System Q Q Q Q

Coprocessor
Integrity
Protection

Pointer Q Q Q Q

Authentication
Codes

Page Q 0 Q Q See Note

Protection below.
Layer

Note: Page Protection Layer (PPL) requires that the platform execute only signed and
trusted code; this is a security model that isn’t applicable in macOS.

Apple-designed silicon also specifically enables the Data Protection capabilities detailed
below.

Feature A10 A11, S3 A12, S4 A13, S5 A14, A15, S6, S7,
M1 Family

Sealed Key Q Q Q Q Q

Protection (SKP)

recoveryOS — All Q Q Q 0 Q

Data Protection

Classes

protected

Alternative (V] Q (V]

boots of DFU,
Diagnostics and
Update — Class
A, B and C data
protected

Apple Platform Security

Secure Enclave

The Secure Enclave is a dedicated secure subsystem in the latest versions of iPhone, iPad,
iPod touch, Mac, Apple TV, Apple Watch and HomePod.

Overview

The Secure Enclave is a dedicated secure subsystem integrated into Apple systems on chip
(SoCs). The Secure Enclave is isolated from the main processor to provide an extra layer

of security and is designed to keep sensitive user data secure even when the Application
Processor kernel becomes compromised. It follows the same design principles as the

SoC — a Boot ROM to establish a hardware root of trust, an AES engine for efficient and
secure cryptographic operations, and protected memory. Although the Secure Enclave
doesn’t include storage, it has a mechanism to store information securely on attached
storage separate from the NAND flash storage that's used by the Application Processor
and operating system.

NAND flash storage DRAM

|

Memory controller
A

NAND flash controller €————9

Application Processor :
AES engine ——p

A
\J

ELT T T TP TY DEE T

TRNG
Secure Enclave v
AES Engine
Seaue BrsEe <—» Memory P_rotectlon
Processor Egfii=
PKA

Secure Enclave

System on chip

Secure Non-Volatile Storage

Apple Platform Security

The Secure Enclave is a hardware feature of most versions of iPhone, iPad, Mac, Apple TV,
Apple Watch and HomePod — namely:

- iPhone 5s or later

- iPad Air or later

- MacBook Pro computers with Touch Bar (2016 and 2017) that contain the Apple T1 Chip
- Intel-based Mac computers that contain the Apple T2 Security Chip

- Mac computers with Apple silicon

+ Apple TV HD or later

- Apple Watch Series 1 or later

. HomePod and HomePod mini

Secure Enclave Processor

The Secure Enclave Processor provides the main computing power for the Secure Enclave.
To provide the strongest isolation, the Secure Enclave Processor is dedicated solely for
Secure Enclave use. This helps prevent side-channel attacks that depend on malicious
software sharing the same execution core as the target software under attack.

The Secure Enclave Processor runs an Apple-customised version of the L4 microkernel. It's
designed to operate efficiently at a lower clock speed that helps protect it against clock
and power attacks. The Secure Enclave Processor, starting with the A11 and S4, includes

a memory-protected engine and encrypted memory with anti-replay capabilities, secure
boot, a dedicated random number generator and its own AES engine.

Memory Protection Engine

The Secure Enclave operates from a dedicated region of the device’'s DRAM memory.
Multiple layers of protection isolate the Secure Enclave protected memory from the
Application Processor.

When the device starts up, the Secure Enclave Boot ROM generates a random ephemeral
memory protection key for the Memory Protection Engine. Whenever the Secure Enclave
writes to its dedicated memory region, the Memory Protection Engine encrypts the block
of memory using AES in Mac XEX (xor-encrypt-xor) mode, and calculates a Cipher-
based Message Authentication Code (CMAC) authentication tag for the memory. The
Memory Protection Engine stores the authentication tag alongside the encrypted memory.
When the Secure Enclave reads the memory, the Memory Protection Engine verifies the
authentication tag. If the authentication tag matches, the Memory Protection Engine
decrypts the block of memory. If the tag doesn’t match, the Memory Protection Engine
signals an error to the Secure Enclave. After a memory authentication error, the Secure
Enclave stops accepting requests until the system is rebooted.

Starting with the Apple A11 and S4 SoCs, the Memory Protection Engine adds replay
protection for Secure Enclave memory. To help prevent replay of security-critical data, the
Memory Protection Engine stores a unique one-off number, called a nonce, for the block
of memory alongside the authentication tag. The nonce is used as an additional tweak for
the CMAC authentication tag. The nonces for all memory blocks are protected using an
integrity tree rooted in dedicated SRAM within the Secure Enclave. For writes, the Memory
Protection Engine updates the nonce and each level of the integrity tree up to the SRAM.
For reads, the Memory Protection Engine verifies the nonce and each level of the integrity
tree up to the SRAM. Nonce mismatches are handled similarly to authentication tag
mismatches.

On Apple A14, A15, the M1 family and later SoCs, the Memory Protection Engine supports
two ephemeral memory protection keys. The first is used for data private to the Secure
Enclave and the second is used for data shared with the Secure Neural Engine.

The Memory Protection Engine operates inline and transparently to the Secure Enclave.
The Secure Enclave reads and writes memory as if it were regular unencrypted

DRAM, whereas an observer outside the Secure Enclave sees only the encrypted and
authenticated version of the memory. The result is strong memory protection without
performance or software complexity tradeoffs.

Secure Enclave Boot ROM

The Secure Enclave includes a dedicated Secure Enclave Boot ROM. Like the Application
Processor Boot ROM, the Secure Enclave Boot ROM is immutable code that establishes the
hardware root of trust for the Secure Enclave.

On system startup, iBoot assigns a dedicated region of memory to the Secure Enclave.
Before using the memory, the Secure Enclave Boot ROM initialises the Memory Protection
Engine to provide cryptographic protection of the Secure Enclave protected memory.

The Application Processor then sends the sepOS image to the Secure Enclave Boot ROM.
After copying the sepOS image into the Secure Enclave protected memory, the Secure
Enclave Boot ROM checks the cryptographic hash and signature of the image to verify that
the sepOS is authorised to run on the device. If the sepOS image is properly signed to run
on the device, the Secure Enclave Boot ROM transfers control to sepOS. If the signature
isn't valid, the Secure Enclave Boot ROM is designed to prevent any further use of the
Secure Enclave until the next chip reset.

On Apple A10 and later SoCs, the Secure Enclave Boot ROM locks a hash of the sepOS
into a register dedicated to this purpose. The Public Key Accelerator uses this hash for
operating-system-bound (OS-bound) keys.

Apple Platform Security 1

Apple Platform Security

Secure Enclave Boot Monitor

On Apple A13 and later SoCs, the Secure Enclave includes a Boot Monitor designed to
ensure stronger integrity on the hash of the booted sepOS.

At system startup, the Secure Enclave Processor's System Coprocessor Integrity
Protection (SCIP) configuration helps prevent the Secure Enclave Processor from executing
any code other than the Secure Enclave Boot ROM. The Boot Monitor helps prevent the
Secure Enclave from modifying the SCIP configuration directly. To make the loaded sepOS
executable, the Secure Enclave Boot ROM sends the Boot Monitor a request with the
address and size of the loaded sepOS. On receipt of the request, the Boot Monitor resets
the Secure Enclave Processor, hashes the loaded sepOS, updates the SCIP settings to
allow execution of the loaded sepOS and starts execution within the newly loaded code.
As the system continues booting, this same process is used whenever new code is made
executable. Each time, the Boot Monitor updates a running hash of the boot process. The
Boot Monitor also includes critical security parameters in the running hash.

When boot completes, the Boot Monitor finalises the running hash and sends it to the
Public Key Accelerator to use for OS-bound keys. This process is designed so that
operating system key binding can’t be bypassed even with a vulnerability in the Secure
Enclave Boot ROM.

True Random Number Generator

The True Random Number Generator (TRNG) is used to generate secure random data. The
Secure Enclave uses the TRNG whenever it generates a random cryptographic key, random
key seed or other entropy. The TRNG is based on multiple ring oscillators post-processed
with CTR_DRBG (an algorithm based on block ciphers in Counter Mode).

Root Cryptographic Keys

The Secure Enclave includes a unique ID (UID) root cryptographic key. The UID is unique to
each individual device and isn't related to any other identifier on the device.

A randomly generated UID is fused into the SoC at manufacturing time. Starting with A9
SoCs, the UID is generated by the Secure Enclave TRNG during manufacturing and written
to the fuses using a software process that runs entirely in the Secure Enclave. This process
protects the UID from being visible outside the device during manufacturing and therefore
isn't available for access or storage by Apple or any of its suppliers.

sepOS uses the UID to protect device-specific secrets. The UID allows data to be
cryptographically tied to a particular device. For example, the key hierarchy protecting the
file system includes the UID, so if the internal SSD storage is physically moved from one
device to another, the files are inaccessible. Other protected device-specific secrets include
Face ID or Touch ID data. On a Mac, only fully internal storage linked to the AES engine
receives this level of encryption. For example, neither external storage devices connected
over USB nor PCle-based storage added to the 2019 Mac Pro are encrypted in this fashion.

The Secure Enclave also has a device group ID (GID), which is common to all devices that
use a given SoC (for example, all devices using the Apple A15 SoC share the same GID).

The UID and GID aren't available through Joint Test Action Group (JTAG) or other
debugging interfaces.

Secure Enclave AES Engine

The Secure Enclave AES Engine is a hardware block used to perform symmetric
cryptography based on the AES cipher. The AES Engine is designed to resist leaking
information by using timing and Static Power Analysis (SPA). Starting with the A9 SoC, the
AES Engine also includes Dynamic Power Analysis (DPA) countermeasures.

The AES Engine supports hardware and software keys. Hardware keys are derived from
the Secure Enclave UID or GID. These keys stay within the AES Engine and aren’t made
visible even to sepOS software. Although software can request encryption and decryption
operations with hardware keys, it can't extract the keys.

On Apple A10 and newer SoCs, the AES Engine includes lockable seed bits that diversify
keys derived from the UID or GID. This allows data access to be conditioned on the
device's mode of operation. For example, lockable seed bits are used to deny access to
password-protected data when booting from Device Firmware Update (DFU) mode. For
more information, see Passcodes and passwords.

AES Engine

Every Apple device with a Secure Enclave also has a dedicated AES256 crypto engine

(the "AES Engine") built into the direct memory access (DMA) path between the NAND
(non-volatile) flash storage and main system memory, making file encryption highly efficient.
On A9 or later A-series processors, the flash storage subsystem is on an isolated bus that's
granted access only to memory containing user data through the DMA crypto engine.

At boot time, sepOS generates an ephemeral wrapping key using the TRNG. The Secure
Enclave transmits this key to the AES Engine using dedicated wires designed to prevent it
from being accessed by any software outside the Secure Enclave. sepOS can then use the
ephemeral wrapping key to wrap file keys for use by the Application Processor file-system
driver. When the file-system driver reads or writes a file, it sends the wrapped key to the
AES Engine, which unwraps the key. The AES Engine never exposes the unwrapped key to
software.

Note: The AES Engine is a separate component to both the Secure Enclave and the Secure
Enclave AES Engine, but its operation is closely tied to the Secure Enclave, as shown below.

Secure Enclave —————

:

[]

)

]

? :

Application :

Processor . 1]

system AES Engine <=)
memory

NAND flash
storage

Apple Platform Security 13

Apple Platform Security

Public Key Accelerator

The Public Key Accelerator (PKA) is a hardware block used to perform asymmetric
cryptography operations. The PKA supports RSA and ECC (Elliptic Curve Cryptography)
signing and encryption algorithms. The PKA is designed to resist leaking information using
timing and side-channel attacks such as SPA and DPA.

The PKA supports software and hardware keys. Hardware keys are derived from the Secure
Enclave UID or GID. These keys stay within the PKA and aren’t made visible even to sepOS
software.

Starting with A13 SoCs, the PKA's encryption implementations have been proved to be
mathematically correct using formal verification techniques.

On Apple A10 and later SoCs, the PKA supports OS-bound keys, also referred to as

Sealed Key Protection (SKP). These keys are generated using a combination of the device's
UID and the hash of the sepOS in use on the device. The hash is provided by the Secure
Enclave Boot ROM, or by the Secure Enclave Boot Monitor on Apple A13 and later SoCs.
These keys are also used to verify the sepOS version when making requests to certain
Apple services and are also used to improve the security of passcode-protected data by
helping to prevent access to keying material if critical changes are made to the system
without user authorisation.

Secure non-volatile storage

The Secure Enclave is equipped with a dedicated secure non-volatile storage device. The
secure non-volatile storage is connected to the Secure Enclave using a dedicated 12C bus,
so it can only be accessed by the Secure Enclave. All user data encryption keys are rooted
in entropy stored in the Secure Enclave non-volatile storage.

In devices with A12, S4 and later SoCs, the Secure Enclave is paired with a Secure
Storage Component for entropy storage. The Secure Storage Component is itself
designed with immutable ROM code, a hardware random number generator, a per-device
unique cryptographic key, cryptography engines and physical tamper detection. The
Secure Enclave and Secure Storage Component communicate using an encrypted and
authenticated protocol that provides exclusive access to the entropy.

Devices first released in autumn 2020 or later are equipped with a 2nd-generation Secure
Storage Component. The 2nd-generation Secure Storage Component adds counter
lockboxes. Each counter lockbox stores a 128-bit salt, a 128-bit passcode verifier, an 8-bit
counter and an 8-bit maximum attempt value. Access to the counter lockboxes is through
an encrypted and authenticated protocol.

Counter lockboxes hold the entropy needed to unlock passcode-protected user data. To
access the user data, the paired Secure Enclave must derive the correct passcode entropy
value from the user’s passcode and the Secure Enclave's UID. The user’s passcode can't
be learned using unlock attempts sent from a source other than the paired Secure Enclave.
If the passcode attempt limit is exceeded (for example, 10 attempts on iPhone), the
passcode-protected data is erased completely by the Secure Storage Component.

Apple Platform Security

To create a counter lockbox, the Secure Enclave sends the Secure Storage Component the
passcode entropy value and the maximum attempt value. The Secure Storage Component
generates the salt value using its random number generator. It then derives a passcode
verifier value and a lockbox entropy value from the provided passcode entropy, the Secure
Storage Component’s unique cryptographic key and the salt value. The Secure Storage
Component initialises the counter lockbox with a count of 0, the provided maximum
attempt value, the derived passcode verifier value and the salt value. The Secure Storage
Component then returns the generated lockbox entropy value to the Secure Enclave.

To retrieve the lockbox entropy value from a counter lockbox later, the Secure Enclave
sends the Secure Storage Component the passcode entropy. The Secure Storage
Component first increments the counter for the lockbox. If the incremented counter
exceeds the maximum attempt value, the Secure Storage Component completely erases
the counter lockbox. If the maximum attempt count hasn't been reached, the Secure
Storage Component attempts to derive the passcode verifier value and lockbox entropy
value with the same algorithm used to create the counter lockbox. If the derived passcode
verifier value matches the stored passcode verifier value, the Secure Storage Component
returns the lockbox entropy value to the Secure Enclave and resets the counter to 0.

The keys used to access password-protected data are rooted in the entropy stored in
counter lockboxes. For more information, see Data Protection overview.

The secure non-volatile storage is used for all anti-replay services in the Secure Enclave.
Anti-replay services on the Secure Enclave are used for revocation of data over events that
mark anti-replay boundaries including, but not limited to, the following:

- Passcode change

- Enabling or disabling Face ID or Touch ID

- Adding or removing a Face ID face or a Touch ID fingerprint
- Face ID or Touch ID reset

- Adding or removing an Apple Pay card

- Erase All Content and Settings

On architectures that don't feature a Secure Storage Component, EEPROM (electrically
erasable programmable read-only memory) is utilised to provide secure storage services
for the Secure Enclave. Just like the Secure Storage Components, the EEPROM is attached
and accessible only from the Secure Enclave, but it doesn’t contain dedicated hardware
security features, nor does it guarantee exclusive access to entropy (aside from its physical
attachment characteristics) or counter lockbox functionality.

Secure Neural Engine

On devices with Face ID, the Secure Neural Engine converts 2D images and depth maps
into a mathematical representation of a user’s face.

On A11 up to A13 SoCs, the Secure Neural Engine is integrated into the Secure Enclave.
The Secure Neural Engine uses direct memory access (DMA) for high performance. An
input-output memory management unit (IOMMU) under the sepOS kernel's control limits
this direct access to authorised memory regions.

Starting with A14 and the M1 family, the Secure Neural Engine is implemented as a secure
mode in the Application Processor’s Neural Engine. A dedicated hardware security
controller switches between Application Processor and Secure Enclave tasks, resetting
Neural Engine state on each transition to keep Face ID data secure. A dedicated engine
applies memory encryption, authentication and access control. At the same time, it uses
a separate cryptographic key and memory range to limit the Secure Neural Engine to
authorised memory regions.

Power and clock monitors

All electronics are designed to operate within a limited voltage and frequency envelope.
When operated outside this envelope, the electronics can malfunction and then security
controls may be bypassed. To help ensure that the voltage and frequency stay in a safe
range, the Secure Enclave is designed with monitoring circuits. These monitoring circuits
are designed to have a much larger operating envelope than the rest of the Secure
Enclave. If the monitors detect an illegal operating point, the clocks in the Secure Enclave
automatically stop and don't restart until the next SoC reset.

Secure Enclave feature summary

Note: A12, A13, S4 and S5 products first released in autumn 2020 have a 2nd-generation
Secure Storage Component, whereas earlier products based on these SoCs have a
1st-generation Secure Storage Component.

SoC Memory Protection Secure Storage AES Engine PKA
Engine

A8 Encryption and EEPROM Yes No
authentication

A9 Encryption and EEPROM DPA protection Yes
authentication

A10 Encryption and EEPROM DPA protection and 0S-bound keys
authentication lockable seed bits

A11 Encryption, EEPROM DPA protection and 0S-bound keys

authentication and lockable seed bits

replay prevention

Apple Platform Security

A12 (Apple devices
released before
autumn 2020)

Encryption,
authentication and
replay prevention

Secure Storage
Component gen 1

DPA protection and
lockable seed bits

OS-bound keys

Apple Platform Security

SoC

A12 (Apple devices
released after
autumn 2020)

A13 (Apple devices
released before
autumn 2020)

A13 (Apple devices
released after

autumn 2020)

A4, A15

S3

S4

S5 (Apple devices
released before
autumn 2020)

S5 (Apple devices
released after
autumn 2020)

S6, S7

T2

M1 Family

Memory Protection
Engine

Encryption,
authentication and
replay prevention

Encryption,
authentication and
replay prevention

Encryption,
authentication and
replay prevention

Encryption,
authentication and
replay prevention

Encryption and
authentication

Encryption,
authentication and
replay prevention

Encryption,
authentication and
replay prevention

Encryption,
authentication and
replay prevention

Encryption,
authentication and
replay prevention

Encryption and
authentication

Encryption,
authentication and
replay prevention

Secure Storage

Secure Storage
Component gen 2

Secure Storage
Component gen 1

Secure Storage
Component gen 2

Secure Storage
Component gen 2

EEPROM

Secure Storage
Component gen 1

Secure Storage
Component gen 1

Secure Storage
Component gen 2

Secure Storage
Component gen 2

EEPROM

Secure Storage
Component gen 2

AES Engine

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits
DPA protection and

lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

DPA protection and
lockable seed bits

PKA

0S-bound keys

0S-bound keys and
Boot Monitor

0OS-bound keys and
Boot Monitor

0S-bound keys and
Boot Monitor

Yes

0S-bound keys

0S-bound keys

OS-bound keys

0S-bound keys

0S-bound keys

0S-bound keys and
Boot Monitor

17

Apple Platform Security

Face ID and Touch ID

Face ID and Touch ID security

Passcodes and passwords are essential to the security of Apple devices. At the same time,
users require convenient access to their devices, often more than a hundred times a day.
Biometric authentication provides a way to retain the security of a strong passcode — or
even strengthen the passcode or password because it need not be entered manually —
while providing the convenience of swiftly unlocking with a finger press or glance. Face ID
and Touch ID don't replace a passcode or password, but in most situations they do make
access faster and easier.

Apple's biometric security architecture relies on a strict separation of responsibilities
between the biometric sensor and the Secure Enclave, and a secure connection between
the two. The sensor captures the biometric image and securely transmits it to the Secure
Enclave. During enrolment, the Secure Enclave processes, encrypts and stores the
corresponding Face ID and Touch ID template data. During matching, the Secure Enclave
compares incoming data from the biometric sensor against the stored templates to
determine whether to unlock the device or respond that a match is valid (for Apple Pay, in-
app purchases and other uses of Face ID and Touch ID). The architecture supports devices
that include both the sensor and Secure Enclave (such as iPhone, iPad and many Mac
systems), as well as the ability to physically separate the sensor into a peripheral that is
then securely paired to the Secure Enclave in a Mac with Apple silicon.

Face ID security

With a simple glance, Face ID securely unlocks supported Apple devices. It provides
intuitive and secure authentication enabled by the TrueDepth camera system, which uses
advanced technologies to accurately map the geometry of a user’s face. Face ID uses
neural networks for determining attention, matching and anti-spoofing, so a user can
unlock their phone with a glance, even with a mask on when using supported devices.
Face ID automatically adapts to changes in appearance and carefully safeguards the
privacy and security of a user’s biometric data.

Face ID is designed to confirm user attention, provide robust authentication with a low
false-match rate and mitigate both digital and physical spoofing.

The TrueDepth camera automatically looks for the user'’s face when the user wakes an
Apple device that features Face ID (by raising it or tapping the screen), as well as when
those devices attempt to authenticate the user in order to display an incoming notification
or when a supported app requests Face ID authentication. When a face is detected, Face ID
confirms attention and intent to unlock by detecting that the user’s eyes are open and

their attention is directed at their device. For accessibility, the Face ID attention check is
disabled when VoiceOver is activated and, if required, can be disabled separately. Attention
detection is always required when using Face ID with a mask.

Apple Platform Security

After the TrueDepth camera confirms the presence of an attentive face, it projects and
reads thousands of infrared dots to form a depth map of the face along with a 2D infrared
image. This data is used to create a sequence of 2D images and depth maps which are
digitally signed and sent to the Secure Enclave. To counter both digital and physical
spoofs, the TrueDepth camera randomises the sequence of 2D images and depth map
captures and projects a device-specific random pattern. A portion of the Secure Neural
Engine — protected within the Secure Enclave — transforms this data into a mathematical
representation and compares that representation with the enrolled facial data. This
enrolled facial data is itself a mathematical representation of the user’s face captured
across a variety of poses.

Touch ID security

Touch ID is the fingerprint sensing system that makes secure access to supported Apple
devices faster and easier. This technology reads fingerprint data from any angle and
learns more about a user’s fingerprint over time, with the sensor continuing to expand the
fingerprint map as additional overlapping nodes are identified with each use.

Apple devices with a Touch ID sensor can be unlocked using a fingerprint. Touch ID doesn't
replace the need for a device passcode or user password, which is still required after
device startup, restart or logout (on a Mac). In some apps, Touch ID can also be used in
place of a device passcode or user password — for example, to unlock password-protected
notes in the Notes app, to unlock keychain-protected websites and to unlock supported
app passwords. However, a device passcode or user password is always required in some
scenarios (for example, to change an existing device passcode or user password or to
remove existing fingerprint enrolments or create new ones).

When the fingerprint sensor detects the touch of a finger, it triggers the advanced imaging
array to scan the finger and sends the scan to the Secure Enclave. The channel used to
secure this connection varies, depending on whether the Touch ID sensor is built into the
device with the Secure Enclave or is located in a separate peripheral.

While the fingerprint scan is being vectorised for analysis, the raster scan is temporarily
stored in encrypted memory within the Secure Enclave and then it's discarded. The
analysis uses subdermal ridge flow angle mapping, a lossy process that discards “finger
minutiae data" that would be required to reconstruct the user’s actual fingerprint. During
enrolment, the resulting map of nodes is stored in an encrypted format that can be read
only by the Secure Enclave as a template to compare against for future matches, but
without any identity information. This data never leaves the device. It's not sent to Apple,
nor is it included in device backups.

Built-in Touch ID channel security

Communication between the Secure Enclave and the built-in Touch ID sensor takes place
over a serial peripheral interface bus. The processor forwards the data to the Secure
Enclave but can’t read it. It's encrypted and authenticated with a session key that's
negotiated using a shared key provisioned for each Touch ID sensor and its corresponding
Secure Enclave at the factory. For every Touch ID sensor, the shared key is strong, random
and different. The session key exchange uses AES key wrapping, with both sides providing
a random key that establishes the session key and uses transport encryption that provides
both authentication and confidentiality (using AES-CCM).

Apple Platform Security

Magic Keyboard with Touch ID

The Magic Keyboard with Touch ID (and the Magic Keyboard with Touch ID and Numeric
Keypad) provides a Touch ID sensor in an external keyboard that can be used with any Mac
with Apple silicon. The Magic Keyboard with Touch ID performs the role of the biometric
sensor; it doesn't store biometric templates, perform biometric matching or enforce
security policies (for example, having to enter the password after 48 hours without an
unlock). The Touch ID sensor in the Magic Keyboard with Touch ID must be securely paired
to the Secure Enclave on the Mac before it can be used, and then the Secure Enclave
performs the enrolment and matching operations and enforces security policies in the
same way it would for a built-in Touch ID sensor. Apple performs the pairing process in

the factory for a Magic Keyboard with Touch ID that is shipped with a Mac. Pairing can
also be performed by the user if needed. A Magic Keyboard with Touch ID can be securely
paired with only one Mac at a time, but a Mac can maintain secure pairings with up to five
different Magic Keyboard with Touch ID keyboards.

The Magic Keyboard with Touch ID and built-in Touch ID sensors are compatible. If a finger
that was enrolled on a built-in Mac Touch ID sensor is presented on a Magic Keyboard with
Touch ID, the Secure Enclave in the Mac successfully processes the match — and vice versa.

To support secure pairing and thus communication between the Mac Secure Enclave and
the Magic Keyboard with Touch ID, the keyboard is equipped with a hardware Public Key

Accelerator (PKA) block to provide attestation, and with hardware-based keys to perform
the necessary cryptographic processes.

Secure pairing

Before a Magic Keyboard with Touch ID can be used for Touch ID operations, it needs to

be securely paired to the Mac. To pair, the Secure Enclave on the Mac and the PKA block

in the Magic Keyboard with Touch ID exchange public keys, rooted in the trusted Appl CA,
and they use hardware-held attestation keys and ephemeral ECDH to securely attest to
their identity. On the Mac, this data is protected by the Secure Enclave; on the Magic
Keyboard with Touch ID, this data is protected by the PKA block. After secure pairing, all
Touch ID data communicated between the Mac and the Magic Keyboard with Touch ID is
encrypted by AES-GCM with a key length of 256 bits, and with ephemeral ECDH keys using
NIST P-256 curve based on the stored identities. (Normal keystrokes are exchanged using
Bluetooth security in the same way that any Bluetooth keyboard does.)

Secure intent to pair

To perform some Touch ID operations for the first time, such as enrolling a new fingerprint,
the user must physically confirm their intent to use a Magic Keyboard with Touch ID

with the Mac. Physical intent is confirmed by pressing twice on the Mac power button
when indicated by the user interface, or by successfully matching a fingerprint that

had previously been enrolled with the Mac. For more information, see Secure intent and
connections to the Secure Enclave.

Apple Pay transactions can be authorised with a Touch ID match or by entering the macOS
user password and pressing twice on the Touch ID button on the Magic Keyboard with
Touch ID. The latter allows the user to confirm physical intent even without a Touch ID match.

20

Apple Platform Security

Magic Keyboard with Touch ID channel security

To help ensure a secure communication channel between the Touch ID sensor in the Magic
Keyboard with Touch ID and Secure Enclave on the paired Mac, the following are required:

- The secure pairing between the Magic Keyboard with Touch ID PKA block and the
Secure Enclave as described above

- A secure channel between the Magic Keyboard with Touch ID sensor and its PKA block

The secure channel between the Magic Keyboard with Touch ID sensor and its PKA block is
established in the factory by using a unique key shared between the two. (This is the same
technique used to create the secure channel between the Secure Enclave on the Mac and
its built-in sensor for Mac computers with Touch ID built-in.)

Face ID, Touch ID, passcodes and passwords

To use Face ID or Touch ID, the user must set up their device so that a passcode or
password is required to unlock it. When Face ID or Touch ID detects a successful match,
the user's device unlocks without asking for the device passcode or password. This makes
using a longer, more complex passcode or password far more practical because the user
doesn’t need to enter it as frequently. Face ID and Touch ID don't replace the user’s
passcode or password; instead, they provide easy access to the device within thoughtful
boundaries and time constraints. This is important because a strong passcode or password
forms the foundation for how a user’s iPhone, iPad, Mac or Apple Watch cryptographically
protects that user’s data.

When a device passcode or password is required

Users can use their passcode or password anytime instead of Face ID or Touch ID, but
there are situations where biometrics aren’t permitted. The following security-sensitive
operations always require entry of a passcode or password:

- Updating the software

- Erasing the device

- Viewing or changing passcode settings

- Installing configuration profiles

- Unlocking the Security & Privacy pane in System Preferences on Mac

- Unlocking the Users & Groups pane in System Preferences on Mac (if FileVault is turned on)

21

A passcode or password is also required if the device is in any of the following states:

- The device has just been turned on or restarted
- The user has logged out of their Mac account (or hasn't yet logged in).
- The user hasn't unlocked their device for more than 48 hours.

- The user hasn't used their passcode or password to unlock their device for 156 hours
(six and a half days), and the user hasn’t used a biometric to unlock their device in
4 hours.

- The device has received a remote lock command

- The user exited power off /| Emergency SOS by pressing and holding either volume button
and the Sleep/Wake button simultaneously for 2 seconds and then pressing Cancel.

+ There were five unsuccessful biometric match attempts (though for usability, the device
might offer entering a passcode or password instead of using biometrics after a smaller
number of failures).

When Face ID with a mask is enabled on an iPhone, it's available for the next 6.5 hours
after one of the following user actions:

- Successful Face ID match attempt (with or without a mask)
- Device passcode validation
- Device unlock with Apple Watch

Any of these actions extends the period by an additional 6.5 hours when performed.

When Face ID or Touch ID is enabled on iPhone or iPad, the device immediately locks
when the Sleep/Wake button is pressed, and the device locks every time it goes to sleep.
Face ID and Touch ID require a successful match — or optionally, use of the passcode — at
every wake.

The probability that a random person in the population could unlock a user’s iPhone or
iPad is less than 1in 1,000,000 with Face ID — including when Face ID with a mask is
turned on. For a user's iPhone, iPad, and Mac models with Touch ID and those paired with a
Magic Keyboard, it's less than 1in 50,000. This probability increases with multiple enrolled
fingerprints (up to 1in 10,000 with five fingerprints) or appearances (up to 1in 500,000
with two appearances). For additional protection, both Face ID and Touch ID allow only five
unsuccessful match attempts before a passcode or password is required to obtain access
to the user’s device or account. With Face ID, the probability of a false match is higher for:

- Twins and siblings who look like the user

- Children under the age of 13 (because their distinct facial features may not have fully
developed)

The probability is further increased in these two cases when Face ID with a mask is used.
If a user is concerned about a false match, Apple recommends using a passcode to
authenticate.

Apple Platform Security 22

Apple Platform Security

Facial matching security

Facial matching is performed within the Secure Enclave using neural networks trained
specifically for that purpose. Apple developed the facial matching neural networks

using over a billion images, including infrared (IR) and depth images collected in studies
conducted with the participants’ informed consent. Apple then worked with participants
from around the world to include a representative group of people accounting for gender,
age, ethnicity and other factors. The studies were augmented as needed to provide a high
degree of accuracy for a diverse range of users. Face ID is designed to work with hats,
scarves, glasses, contact lenses and many types of sunglasses. Face ID also supports
unlocking with a mask on iPhone devices starting with iPhone 12 and iOS 15.4 or later.
Furthermore, it's designed to work indoors, outdoors and even in total darkness. An
additional neural network — that's trained to spot and resist spoofing — defends against
attempts to unlock the device with photos or masks. Face ID data, including mathematical
representations of a user’s face, is encrypted and available only to the Secure Enclave.
This data never leaves the device. It's not sent to Apple, noris it included in device
backups. The following Face ID data is saved, encrypted only for use by the Secure Enclave
during normal operation:

- The mathematical representations of a user's face calculated during enrolment

- The mathematical representations of a user’s face calculated during some unlock
attempts if Face ID deems them useful to augment future matching

Face images captured during normal operation aren’t saved but are instead immediately
discarded after the mathematical representation is calculated for either enrolment or
comparison with the enrolled Face ID data.

Improving Face ID matches

To improve match performance and keep pace with the natural changes of a face and look,
Face ID augments its stored mathematical representation over time. Upon a successful
match, Face ID may use the newly calculated mathematical representation — if its quality

is sufficient — for a finite number of additional matches before that data is discarded.
Conversely, if Face ID fails to recognise a face but the match quality is higher than a certain
threshold and a user immediately follows the failure by entering their passcode, Face ID
takes another capture and augments its enrolled Face ID data with the newly calculated
mathematical representation. This new Face ID data is discarded if the user stops matching
against it or after a finite number of matches; the new data is also discarded when the
option to reset Face ID is selected. These augmentation processes allow Face ID to keep
up with dramatic changes in a user’s facial hair or makeup use while minimising false
acceptance.

23

Apple Platform Security

Uses for Face ID and Touch ID

Unlocking a device or user account

With Face ID or Touch ID turned off, when a device or account locks, the keys for the
highest class of Data Protection — which are held in the Secure Enclave — are discarded.
The files and keychain items in that class are inaccessible until the user unlocks the device
or account by entering their passcode or password.

With Face ID or Touch ID turned on, the keys aren't discarded when the device or

account locks; instead, they're wrapped with a key that's given to the Face ID or Touch ID
subsystem inside the Secure Enclave. When a user attempts to unlock the device or
account, if the device detects a successful match it provides the key for unwrapping

the Data Protection keys and the device or account is unlocked. This process provides
additional protection by requiring cooperation between the Data Protection and Face ID or
Touch ID subsystems to unlock the device.

When the device restarts, the keys required for Face ID or Touch ID to unlock the device or
account are lost; they're discarded by the Secure Enclave after any condition is met that
requires passcode or password entry.

Securing purchases with Apple Pay

The user can also use Face ID and Touch ID with Apple Pay to make easy and secure
purchases in shops, in apps and on the web:

- Using Face ID in shops: To authorise an in-store payment with Face ID, the user must
first confirm intent to pay by double-clicking the side button. This double-click captures
user intent using a physical gesture directly linked to the Secure Enclave and is resistant
to forgery by a malicious process. The user then authenticates using Face ID before
placing the device near the contactless payment reader. A different Apple Pay payment
method can be selected after Face ID authentication, which requires re-authentication,
but the user won’t have to double-click the side button again.

- Using Face ID in apps and on the web: To make a payment within apps and on the
web, the user confirms their intent to pay by double-clicking the side button and then
authenticates using Face ID to authorise the payment. If the Apple Pay transaction
isn't completed within 60 seconds of double-clicking the side button, the user must
reconfirm intent to pay by double-clicking again.

- Using Touch ID: For Touch ID, the intent to pay is confirmed using the gesture of activating
the Touch ID sensor combined with successfully matching the user’s fingerprint.

Using system-provided APIs

Third-party apps can use system-provided APls to ask the user to authenticate using
Face ID or Touch ID or a passcode or password, and apps that support Touch ID
automatically support Face ID without any changes. When using Face ID or Touch ID,
the app is notified only as to whether the authentication was successful; it can’t access
Face ID, Touch ID or the data associated with the enrolled user.

24

Protecting keychain items

Keychain items can also be protected with Face ID or Touch ID, to be released by the
Secure Enclave only by a successful match or with the device passcode or account
password. App developers have APIs to verify that a passcode or password has been set
by the user before requiring Face ID or Touch ID or a passcode or password to unlock
keychain items. App developers can do any of the following:

- Require that authentication APl operations don't fall back to an app password or the
device passcode. They can query whether a user is enrolled, allowing Face ID or
Touch ID to be used as a second factor in security-sensitive apps.

- Generate and use Elliptic Curve Cryptography (ECC) keys inside the Secure Enclave
that can be protected by Face ID or Touch ID. Operations with these keys are always
performed inside the Secure Enclave after it authorises their use.

Making and approving purchases

Users can also configure Face ID or Touch ID to approve purchases from the iTunes Store,
the App Store, Apple Books and more, so they don't have to enter their Apple ID password.
When purchases are made, the Secure Enclave verifies that a biometric authorisation
occurred and then releases ECC keys used to sign the store request.

Secure intent and connections to the Secure Enclave

Secure intent provides a way to confirm a user’s intent without any interaction with the
operating system or Application Processor. The connection is a physical link — from a
physical button to the Secure Enclave — that’s available in the following:

« iPhone X or later

- Apple Watch Series 1 or later

- iPad Pro (all models)

« iPad Air (2020)

- Mac computers with Apple silicon

With this link, users can confirm their intent to complete an operation in a way designed

such that even software with root privileges or in the kernel can’t spoof.

This feature is used to confirm user intent during Apple Pay transactions and when
finalising pairing Magic Keyboard with Touch ID to a Mac with Apple silicon. A double-press
on the appropriate button (for Face ID) or a fingerprint scan (for Touch ID) when prompted
by the user interface signals confirmation of user intent. For more information, see
Securing purchases with Apple Pay. A similar mechanism — based on the Secure Enclave
and T2 firmware — is supported on MacBook models with the Apple T2 Security Chip and
no Touch Bar.

Apple Platform Security 25

Apple Platform Security

Hardware microphone disconnect

All Apple silicon-based Mac notebooks and Intel-based Mac notebooks with the Apple T2
Security Chip feature a hardware disconnect that disables the microphone whenever the
lid is closed. On all 13-inch MacBook Pro and MacBook Air notebooks with the T2 chip,

all MacBook notebooks with a T2 chip from 2019 or later, and Mac notebooks with Apple
silicon, this disconnect is implemented in hardware alone. The disconnect is designed

to prevent any software — even with root or kernel privileges in macOS, and even the
software on the T2 chip or other firmware — from engaging the microphone when the lid is
closed. (The camera isn't disconnected in hardware because its field of view is completely
obstructed with the lid closed.)

iPad models from 2020 onwards also feature the hardware microphone disconnect. When
an MFi-compliant case (including those sold by Apple) is attached to the iPad and closed,
the microphone is disconnected in hardware. This is designed to prevent microphone audio
data being made available to any software — even with root or kernel privileges in iPadOS
or any device firmware.

The protections in this section are implemented directly with hardware logic, according to
the following circuit diagram:

Enable mi Clock lines

nable mics ;

. . to microphone
Lid sensors Lagfe | Mic clock or data or data lines

(one line per sensor) S— to SoC,

depending on

(one line per mic) the product.

Mic clock or data

(one line per mic)

In each product with a hardware microphone cutoff, one or more lid sensors detects

the physical closure of the lid or case using some physical property (for example, a Hall
effect sensor or a hinge angle sensor) of the interaction. For sensors where calibration is
necessary, parameters are set during production of the device and the calibration process
includes a non-reversible hardware lockout of any subsequent changes to sensitive
parameters on the sensor. These sensors emit a direct hardware signal that goes through
a simple set of non-reprogrammable hardware logic. This logic provides debounce,
hysteresis and/or a delay of up to 500ms before disabling the microphone. Depending on
the product, this signal can be implemented either by disabling the lines transporting data
between the microphone and the System on Chip (SoC) or by disabling one of the input
lines to the microphone module that's allowing it to be active — for example, the clock line
or a similar effective control.

26

Apple Platform Security

Express Cards with power reserve

If iOS isn't in use because iPhone needs to be charged, there may still be enough power in
the battery to support Express Card transactions. Supported iPhone devices automatically
support this feature with:

- A payment or travel card designated as the Express Travel card

- Student ID cards with Express Mode turned on

- Car keys with Express Mode turned on

- Home keys with Express Mode turned on

- Hospitality or Corporate access cards with Express Mode turned on

Pressing the side button (or on iPhone SE 2nd generation, the Home button), displays the
low-battery icon as well as text indicating that Express Cards are available to use. The

NFC controller performs Express Card transactions under the same conditions as when
iOS is in use, except that transactions are indicated only with haptic notification (no visible
notification is shown). On iPhone SE 2nd generation, completed transactions may take a
few seconds to appear onscreen. This feature isn't available when a standard user-initiated
shutdown is performed.

27

Apple Platform Security

System security

System security overview

Building on the unique capabilities of Apple hardware, system security is responsible for
controlling access to system resources in Apple devices without compromising usability.
System security encompasses the boot-up process, software updates, and protection
of computer system resources such as CPU, memory, disk, software programs and
stored data.

The most recent versions of Apple operating systems are the most secure. An important
part of Apple security is secure boot, which protects the system from malware infection

at boot time. Secure boot begins in hardware and builds a chain of trust through software,
where each step is designed to ensure that the next is functioning properly before handing
over control. This security model supports not only the default boot of Apple devices, but
also the various modes for recovery and timely updates on Apple devices. Subcomponents
like the T2 Chip and the Secure Enclave also perform their own secure boot to help

ensure they only boot known-good code from Apple. The update system is designed to
prevent downgrade attacks, so that devices can't be rolled back to an older version of the
operating system (which an attacker knows how to compromise) as a method of stealing
user data.

Apple devices also include boot and runtime protections so they maintain their integrity
during ongoing operation. Apple-designed silicon on iPhone, iPad, Apple Watch, Apple TV,
HomePod and a Mac with Apple silicon provide a common architecture for protecting
operating system integrity. macOS also features an expanded and configurable set of
protection capabilities in support of its differing computing model, as well as capabilities
supported on all Mac hardware platforms.

Secure boot

Boot process for iOS and iPadOS devices

Each step of the startup process contains components that are cryptographically signed
by Apple to enable integrity checking so that the boot proceeds only after verifying the
chain of trust. These components include the bootloaders, the kernel, kernel extensions
and mobile baseband firmware. This secure boot chain is designed to verify that the lowest
levels of software aren’t tampered with.

28

When an iOS or iPadOS device is turned on, its Application Processor immediately executes
code from read-only memory referred to as Boot ROM. This immutable code, known as

the hardware root of trust, is laid down during chip fabrication and is implicitly trusted.

The Boot ROM code contains the Apple Root certificate authority (CA) public key — used
to verify that the iBoot bootloader is signed by Apple before allowing it to load. This is the
first step in the chain of trust, in which each step checks that the next is signed by Apple.
When the iBoot finishes its tasks, it verifies and runs the iOS or iPadOS kernel. For devices
with an A9 or earlier A-series processor, an additional Low Level Bootloader (LLB) stage is
loaded and verified by the Boot ROM, which in turn loads and verifies iBoot.

A failure to load or verify following stages is handled differently depending on the
hardware:

+ Boot ROM can’t load LLB (older devices): Device Firmware Upgrade (DFU) mode
« LLB oriBoot: Recovery mode

In either case, the device must be connected to the Finder (macOS 10.15 or later) or iTunes
(macOS 10.14 or earlier) through USB and restored to factory default settings.

The Boot Progress Register (BPR) is used by the Secure Enclave to limit access to user
data in different modes and is updated before entering the following modes:

+ DFU mode: Set by Boot ROM on devices with Apple A12 or later SoCs
+ Recovery mode: Set by iBoot on devices with Apple A10, S2 or later SoCs

On devices with mobile access, a mobile baseband subsystem performs additional secure
booting using signed software and keys verified by the baseband processor.

The Secure Enclave also performs a secure boot that checks its software (sepQS) is
verified and signed by Apple.

Memory safe iBoot implementation

In i0S 14 and iPadOS 14, Apple modified the C compiler toolchain used to build the iBoot
bootloader to improve its security. The modified toolchain implements code designed to
prevent memory- and type-safety issues that are typically encountered in C programs. For
example, it helps prevent most vulnerabilities in the following classes:

- Buffer overflows, by ensuring that all pointers carry bounds information that is verified
when accessing memory

- Heap exploitation, by separating heap data from its metadata and accurately detecting
error conditions such as double free errors

« Type confusion, by ensuring that all pointers carry runtime type information that's
verified during pointer cast operations

- Type confusion caused by use after free errors, by segregating all dynamic memory
allocations by static type

This technology is available on iPhone with Apple A13 Bionic or later, and iPad with the A14
Bionic chip.

Apple Platform Security 29

Apple Platform Security

Mac computers with Apple silicon

Boot process for a Mac with Apple silicon

When a Mac with Apple silicon is turned on, it performs a boot process much like that of
iPhone and iPad.

Boot ROM validates LLB signature

'

LLB validates system-paired
firmware signatures

l Secure Enclave Boot
Secure Enclave ROM fetches
signed —> LLB validates LocalPolicy signature < LocalPolicy
LocalPolicy nonces from Secure
l Storage Component

LLB evaluates iBoot stage 2 signature
according to LocalPolicy

'

iBoot stage 2 validates macOS-paired
firmware, Boot Kernel Collection,
Auxiliary Kernel Collection (if applicable),
system trust cache and signed system
volume signatures according
to LocalPolicy

'

macOS

The chip executes code from the Boot ROM in the first step in the chain of trust. macOS
secure boot on a Mac with Apple silicon verifies not only the operating system code itself,
but also the security policies and even kexts (supported, though not recommended)
configured by authorised users.

When LLB (Low Level Bootstrap) is launched, it then verifies the signatures and loads
system-paired firmware for intra-SoC cores such as the storage, display, system
management and Thunderbolt controllers. LLB is also responsible for loading the
LocalPolicy, which is a file signed by the Secure Enclave Processor. The LocalPolicy file
describes the configuration that the user has chosen for the system boot and runtime
security policies. The LocalPolicy has the same data structure format as all other boot
objects, but it's signed locally by a private key that's available only within a particular
computer’s Secure Enclave instead of being signed by a central Apple server (like software
updates).

To help prevent replay of any previous LocalPolicy, LLB must look up a nonce from the
Secure Enclave-attached Secure Storage Component. To do this, it uses the Secure
Enclave Boot ROM and makes sure the nonce in the LocalPolicy matches the nonce in the
Secure Storage Component. This helps prevent an old LocalPolicy — which could have
been configured for lower security — from being reapplied to the system after security has
been upgraded. The result is that secure boot on a Mac with Apple silicon helps protect
not only against rollback of operating system versions but also against security policy
downgrades.

30

Apple Platform Security

The LocalPolicy file captures whether the operating system is configured for Full, Reduced
or Permissive security.

- Full Security: The system behaves like iOS and iPadOS, and allows only booting
software that was known to be the latest that was available at install time.

- Reduced Security: LLB is directed to trust “global” signatures, which are bundled with
the operating system. This allows the system to run older versions of macOS. Because
older versions of macOS inevitably have unpatched vulnerabilities, this security mode
is described as Reduced. This is also the policy level required to support booting kernel
extensions (kexts).

- Permissive Security: The system behaves like Reduced Security in that it uses global
signature verification for iBoot and beyond, but it also tells iBoot that it should accept
some boot objects being signed by the Secure Enclave with the same key used to sign
the LocalPolicy. This policy level supports users that are building, signing and booting
their own custom XNU kernels.

If the LocalPolicy indicates to LLB that the selected operating system is running in Full
Security, LLB evaluates the personalised signature for iBoot. If it's running in Reduced
Security or Permissive Security, it evaluates the global signature. Any signature verification
errors cause the system to boot to recoveryOS to provide repair options.

After LLB hands off to iBoot, it loads macOS-paired firmware such as that for the Secure
Neural Engine, the Always On Processor and other firmware. iBoot also looks at information
about the LocalPolicy handed to it from LLB. If the LocalPolicy indicates that there should
be an Auxiliary Kernel Collection (AuxKC), iBoot looks for it on the file system, verifies that
it was signed by the Secure Enclave with the same key as the LocalPolicy, and verifies that
its hash matches a hash stored in the LocalPolicy. If the AuxKC is verified, iBoot places it
into memory with the Boot Kernel Collection before locking the full memory region covering
the Boot Kernel Collection and AuxKC with the System Coprocessor Integrity Protection
(SCIP). If the policy indicates that an AuxKC should be present but it isn't found, the
system continues to boot into macOS without it. iBoot is also responsible for verifying the
root hash for the signed system volume (SSV) to check that the file system the kernel will
mount is fully integrity verified.

31

Boot modes for a Mac with Apple silicon

A Mac with Apple silicon has the boot modes described below.

Mode Key combo

macOS From a shutdown state, press

and release the power button.

Paired recoveryOS From a shutdown state, press
and hold the power button.

Fallback recoveryOS From a shutdown state,
double-press and hold the
power button.

Safe mode Boot into recoveryOS per the
above, then hold Shift while
selecting the startup volume.

Apple Platform Security

Description

1. Boot ROM hands off to LLB.

2. LLB loads system-paired firmware and the LocalPolicy
for the selected macOS.

3. LLB locks an indication into the Boot Progress
Register (BPR) that it's booting into macOS, and
hands off to iBoot.

4. iBoot loads the macOS-paired firmware, the static
trust cache, the device tree and the Boot Kernel
Collection.

5. If the LocalPolicy allows it, iBoot loads the Auxiliary
Kernel Collection (AuxKC) of third-party kexts.

6. If the LocalPolicy didn't disable it, iBoot verifies the
root signature hash for the signed system volume
(SSV).

1. Boot ROM hands off to LLB.

2. LLB loads system-paired firmware and the LocalPolicy
for the recoveryOS.

3. LLB locks an indication into the Boot Progress
Register that it's booting into paired recoveryOS, and
hands off to iBoot for paired recoveryOS.

4. iBoot loads the macOS-paired firmware, the trust
cache, the device tree and the Boot Kernel Collection.

5. If paired recoveryOS boot fails, booting into fallback
recoveryOS is attempted.

Note: Security downgrades aren’t allowed on the paired
recoveryOS LocalPolicy.

1. Boot ROM hands off to LLB.

2. LLB loads system-paired firmware and the LocalPolicy
for the recoveryOS.

3. LLB locks an indication into the Boot Progress
Register that it's booting into paired recoveryOS, and
hands off to iBoot for recoveryOS.

4. iBoot loads the macOS-paired firmware, the trust
cache, the device tree and the Boot Kernel Collection.

Note: Security downgrades aren’t allowed on the paired

recoveryOS LocalPolicy.

1. Boots to recoveryOS as per the above.

2. Holding the Shift key while selecting a volume causes
the BootPicker app to approve that macOS for
booting, as normal; it also sets an nvram variable that
tells iBoot to not load the AuxKC on the next boot.

3. System reboots and boots to the targeted volume, but
iBoot doesn't load AuxKC.

32

Apple Platform Security

Paired recoveryOS restrictions

In macOS 12.0.1 or later, every new macOS installation also installs a paired version of
recoveryOS into the corresponding APFS volume group. This design is familiar to users

of Intel-based Mac computers, but on a Mac with Apple silicon, it provides additional
security and compatibility guarantees. Because every macOS installation now has a
dedicated paired recoveryQS, this helps ensure that only that dedicated paired recoveryOS
can perform security-downgrading operations. This helps protect installations of newer
versions of macOS from tampering initiated from older versions of macOS, and vice versa.

The pairing restrictions are enforced as follows:

- All installations of macOS 11 are paired to the recoveryOS. If a macOS 11 installation is
selected to boot by default, the recoveryOS is booted by holding down the power key at
boot time on a Mac with Apple silicon. The recoveryOS can downgrade security settings
of any macOS 11 installations, but not any installations of macOS 12.0.1.

« If amacOS 12.0.1 or later installation is selected to boot by default, its paired
recoveryOS is booted by holding down the power key when the Mac starts up. The
paired recoveryOS can downgrade security settings for the paired macOS installation,
but not for any other macOS installation.

To boot into a paired recoveryOS for any macOS installation, that installation needs to
be selected as the default, which is done using Startup Disk in System Preferences or by
starting any recoveryOS and holding Option while selecting a volume.

Note: Fallback recoveryOS can't perform downgrades for any macOS installations.

Startup Disk security policy control for a Mac with Apple silicon

Overview

Unlike security policies on an Intel-based Mac, security policies on a Mac with Apple
silicon are for each installed operating system. This means that multiple installed macOS
instances with different versions and security policies are supported on the same Mac. For
this reason, an operating system picker has been added to Startup Security Utility.

Startup Security Utility

Select the system you want to use to set the security policy

-

a

e

Macintosh HD
macO0S 12.3

You have selected macOS 12.3 on the disk “Macintosh HD". Security Policy...

On a Mac with Apple silicon, System Security Utility indicates the overall user-configured
security state of macOS, such as the booting of a kext or the configuration of System
Integrity Protection (SIP). If changing a security setting would significantly degrade
security or make the system easier to compromise, users must enter into recoveryOS

by holding the power button (so that malware can't trigger the signal, only a human with
physical access can) to make the change. Because of this, an Apple silicon-based Mac also
won't require (or support) a firmware password — all critical changes are already gated by
user authorisation. For more information on SIP, see System Integrity Protection.

33

Apple Platform Security

Full Security and Reduced Security can be set using Startup Security Utility from
recoveryOS. But Permissive Security can be accessed only from command-line tools for
users who accept the risk of making their Mac much less secure.

Full Security policy

Full Security is the default and it behaves like iOS and iPadOS. At the time software is
downloaded and prepared to install, rather than using the global signature that comes with
the software, macOS contacts the same Apple signing server used for iOS and iPadOS and
requests a fresh, “personalised” signature. A signature is personalised when it includes the
Exclusive Chip Identification (ECID) — a unique ID specific to the Apple CPU in this case —
as part of the signing request. The signature given back by the signing server is then
unique and usable only by that particular Apple CPU. When the Full Security policy is in
effect, the Boot ROM and LLB helps ensure that a given signature isn't just signed by Apple
but is signed for this specific Mac, essentially tying that version of macOS to that Mac.

Security Policy for “Macintosh HD":

® Full Security

Ensures that only your current OS, or signed operating system software currently trusted by
Apple, can run. This mode requires a network connection at software installation time.

Reduced Security

Allows any version of signed operating system software ever trusted by Apple to run.

Cancel

Using an online signing server also provides better protection against rollback attacks
than typical global signature approaches. In a global signing system, the security epoch
could have rolled many times but a system that has never seen the latest firmware won't
know this. For example, a computer that currently believes it's in security epoch 1 accepts
software from security epoch 2, even if the current actual security epoch is 5. With an
Apple silicon online signing system, the signing server can reject creating signatures for
software that's in anything except the latest security epoch.

Additionally, if an attacker discovers a vulnerability after a security epoch change, they
can't simply pick up the vulnerable software from a previous epoch off system A and

apply it to system B in order to attack it. The fact that the vulnerable software from an
older epoch was personalised to system A helps prevent it from being transferable and
thus being used to attack system B. All these mechanisms work together to provide much
stronger guarantees that attackers can't purposely place vulnerable software on a Mac in
order to circumvent the protections provided by the latest software. But a user that's in
possession of an administrator username and password for the Mac can always choose the
security policy that works best for their use cases.

34

Apple Platform Security

Reduced Security policy

Reduced Security is similar to Medium Security behaviour on an Intel-based Mac with a
T2 chip, in which a vendor (in this case, Apple) generates a digital signature for the code
to assert it came from the vendor. This design helps prevent attackers from inserting
unsigned code. Apple refers to this signature as a “global” signature because it can be
used on any Mac, for any amount of time, for a Mac that currently has a Reduced Security
policy set. Reduced security doesn’t itself provide protection against rollback attacks
(although unauthorised operating system changes can result in user data being rendered
inaccessible. For more information, see Kernel extensions in a Mac with Apple silicon.

Security Policy for "Macintosh HD":

Full Security

Ensures that only your current OS, or signed operating system software currently trusted by
Apple, can run. This mode requires a network connection at software installation time.

® Reduced Security
Allows any version of signed operating system software ever trusted by Apple to run.
Allow user management of kernel extensions from identified developers

Allow remote management of kernel extensions and automatic software updates

In addition to enabling users to run older versions of macOS, Reduced Security is required
for other actions that can put a user’s system security at risk, such as introducing third-
party kernel extensions (kexts). Kexts have the same privileges as the kernel, and thus
any vulnerabilities in third-party kexts can lead to full operating system compromise. This
is why developers are being strongly encouraged to adopt system extensions before kext
support is removed from macQOS for future Mac computers with Apple silicon. Even when
third-party kexts are enabled, they can't be loaded into the kernel on demand. Instead,
the kexts are merged into an Auxiliary Kernel Collection (AuxKC) — whose hash is stored
in the LocalPolicy — and thus they require a reboot. For more information about AuxKC
generation, see Kernel extensions in macOS.

Permissive Security policy

Permissive Security is for users who accept the risk of putting their Mac into a much more
insecure state. This mode differs from No Security mode on an Intel-based Mac with a T2
chip. With Permissive Security, signature verification is still performed along the entire
secure boot chain, but setting the policy to Permissive signals to iBoot that it should
accept locally Secure Enclave-signed boot objects, such as a user-generated Boot Kernel
Collection built from a custom XNU kernel. This way, Permissive Security also provides an
architectural capability for running an arbitrary “fully untrusted operating system” kernel.
When a custom Boot Kernel Collection or fully untrusted operating system is loaded on
the system, some decryption keys become unavailable. This is designed to prevent fully
untrusted operating systems from accessing data from trusted operating systems.

35

Apple Platform Security

Important: Apple doesn’t provide or support custom XNU kernels.

Security Policy for “Macintosh HD":

Full Security

Ensures that only your current OS, or signed operating system software currently trusted by
Apple, can run. This mode requires a network connection at software installation time.

Reduced Security

Allows any version of signed operating system software ever trusted by Apple to run.

Permissive Security

Does not enforce any requirements on the bootable OS.

There's another way that Permissive Security differs from No Security on an Intel-based
Mac with a T2 chip: it's a prerequisite for some security downgrades that in the past have
been independently controllable. Most notably, to disable System Integrity Protection (SIP)
on a Mac with Apple silicon, a user must acknowledge that they're putting the system into
Permissive Security. This is required because disabling SIP has always put the system into
a state that makes the kernel much easier to compromise. In particular, disabling SIP on a
Mac with Apple silicon disables kext signature enforcement during AuxKC generation time,
thus allowing any arbitrary kext to be loaded into kernel memory. Another improvement to
SIP that's been made on a Mac with Apple silicon is that the policy store has been moved
out of NVRAM and into the LocalPolicy. So now, disabling SIP requires authentication by a
user who has access to the LocalPolicy signing key from recoveryOS (reached by pressing
and holding the power button). This makes it significantly more difficult for a software-only
attacker, or even a physically present attacker, to disable SIP.

It isn't possible to downgrade to Permissive Security from the Startup Security Utility app.
Users can downgrade only by running command-line tools from Terminal in recoveryOS,
such as csrutil (to disable SIP). After the user has downgraded, the fact that it's
occurred is reflected in Startup Security Utility, and so a user can easily set the security to
a more secure mode.

Note: A Mac with Apple silicon doesn't require or support a specific media boot policy
because technically all boots are performed locally. If a user chooses to boot from external
media, that operating system version must first be personalised using an authenticated
reboot from recoveryQOS. This reboot creates a LocalPolicy file on the internal drive that's
used to perform a trusted boot from the operating system stored on the external media.
This means the configuration of booting from external media is always explicitly enabled
on a per-operating system basis, and already requires user authorisation, so no additional
secure configuration is necessary.

36

Apple Platform Security

LocalPolicy signing-key creation and management

Creation

When macOS is first installed in the factory, or when a tethered erase-install is performed,
the Mac runs code from temporary restore RAM disk to initialise the default state. During
this process, the restore environment creates a new pair of public and private keys,

which are held in the Secure Enclave. The private key is referred to as the Owner Identity
Key (OIK). If any OIK already exists, it's destroyed as part of this process. The restore
environment also initialises the key used for Activation Lock; the User Identity Key (UIK).
Part of that process that is unique to a Mac with Apple silicon is when UIK certification is
requested for Activation Lock, a set of requested constraints to be enforced at validation-
time on the LocalPolicy are included. If the device can’t get a UIK certified for Activation
Lock (for example, because the device is currently associated with a Find My Mac account
and reported as lost), it's unable to proceed further to create a LocalPolicy. If a device

is issued a User identity Certificate (ucrt), that ucrt contains server-imposed policy
constraints and user-requested policy constraints in an X.509 v3 extension.

When an Activation Lock/ucrt is successfully retrieved, it's stored in a database on the
server side and also returned to the device. After the device has a ucrt, a certification
request for the public key that corresponds to the OIK is sent to the Basic Attestation
Authority (BAA) server. BAA verifies the OIK certification request using the public key from
the ucrt stored in the BAA accessible database. If the BAA can verify the certification, it
certifies the public key, returning the Owner Identity Certificate (OIC), which is signed by
the BAA and contains the constraints stored in ucrt. The OIC is sent back to the Secure
Enclave. From then on, whenever the Secure Enclave signs a new LocalPolicy, it attaches
the OIC to the Image4. LLB has built-in trust in the BAA root certificate, which causes it to
trust the OIC, which causes it to trust the overall LocalPolicy signature.

RemotePolicy constraints

All Image4 files, not just Local Policies, contain constraints on Image4 manifest evaluation.
These constraints are encoded using special object identifiers (OIDs) in the leaf certificate.
The Image4 verification library looks up the special certificate constraint OID from a
certificate during signature evaluation and then mechanically evaluates the constraints
specified in it. The constraints are of the form:

. X must exist
- X must not exist
- X must have a specific value

So, for instance, for “personalised” signatures, the certificate constraints will contain
"ECID must exist”, and for “global” signatures, it will contain "ECID must not exist”. These
constraints are designed to ensure that all Image4 files signed by a given key must
conform to certain requirements to avoid erroneous signed Image4 manifest generation.

37

Apple Platform Security

In the context of each LocalPolicy, these Image4 certificate constraints are referred to

as the RemotePolicy. A different RemotePolicy can exist for different boot environments’
LocalPolicies. The RemotePolicy is used to restrict the recoveryOS LocalPolicy so that
when recoveryOS is booted it can only ever behave as if it's booting with Full Security. This
increases trust in the integrity of the recoveryOS boot environment as a place where policy
can be changed. The RemotePolicy restricts the LocalPolicy to contain the ECID of the
Mac on which the LocalPolicy was generated, and the specific Remote Policy Nonce Hash
(rpnh) stored in the Secure Storage Component on that Mac. The rpnh, and therefore the
RemotePolicy, change only when actions are taken for Find My Mac and Activation Lock,
such as enrolment, unenrolment, remote lock and remote wipe. RemotePolicy constraints
are determined and specified at User Identity Key (UIK) certification time and are signed

in to the issued User identity Certificate (ucrt). Some RemotePolicy constraints, such as
ECID, ChiplD and BoardID, are determined by the server. This is designed to prevent one
device from signing LocalPolicy files for another device. Other RemotePolicy constraints
may be specified by the device to help prevent Security downgrade of the LocalPolicy
without providing both the local authentication required to access the current OIK and
remote authentication of the account to which the device is Activation Locked.

Contents of a LocalPolicy file for a Mac with Apple silicon

The LocalPolicy is an Image4 file signed by the Secure Enclave. Image4 is an ASN.1
(Abstract Syntax Notation One) DER-encoded data structure format that's used to describe
information about secure boot chain objects on Apple platforms. In an Image4-based
secure boot model, security policies are requested at software installation time initiated

by a signing request to a central Apple signing server. If the policy was acceptable, the
signing server returns a signed Image4 file containing a variety of four-character code
(4CC) sequences. These signed Image4 files and 4CCs are evaluated at startup by
software like the Boot ROM or LLB.

Ownership handoff between operating systems

Access to the Owner Identity Key (OIK) is referred to as "Ownership”. Ownership is required
to allow users to re-sign the LocalPolicy after making policy or software changes. The OIK
is protected with the same key hierarchy as described in Sealed Key Protection (SKP), with
the OIK being protected by the same Key encryption key (KEK) as the Volume encryption
key (VEK). This means it's normally protected by both user passwords and measurements
of the operating system and policy. There's only a single OIK for all operating systems on
the Mac. Therefore, when installing a second operating system, explicit consent is required
from the users on the first operating system to hand off Ownership to the users on the
second operating system. However, users don't yet exist for the second operating system
when the installer is running from the first operating system. Users in operating systems
aren't normally generated until the operating system is booted and the Setup Assistant

is running. Therefore, two new actions are required when installing a second operating
system on a Mac with Apple silicon:

- Creating a LocalPolicy for the second operating system

- Preparing an "Install User” for handing off Ownership

38

Apple Platform Security

When running an Install Assistant and targeting installation for a secondary blank volume,
a prompt asks the user if they'd like to copy a user from the current volume to be the

first user of the second volume. If the user says yes, the “Install User” that is created

is, in reality, a KEK derived from the selected user's password and hardware keys, which
is then used to encrypt the OIK as it’s being handed to the second operating system.
Then from within the second operating system Install Assistant, it prompts for that user’s
password to allow it to access the OIK in the Secure Enclave for the new operating system.
If users opt not to copy a user, the Install User is still created the same way, but an empty
password is used instead of a user'’s password. This second flow exists for certain system
administration scenarios. However, users who want to have multi-volume installs and
perform Ownership handoff in the most secure fashion should always opt to copy a user
from the first operating system to the second operating system.

LocalPolicy on a Mac with Apple silicon

For a Mac with Apple silicon, local security policy control has been delegated to an
application running in the Secure Enclave. This software can utilise the user’s credentials
and the boot mode of the primary CPU to determine who can change the security policy
and from what boot environment. This helps prevent malicious software from using the
security policy controls against the user by downgrading them to gain more privileges.

LocalPolicy manifest properties

The LocalPolicy file contains some architectural 4CCs that are found in almost all Image4
files — such as a board or model ID (BORD), indicating a particular Apple chip (CHIP) or
Exclusive Chip Identification (ECID). But the 4CCs below focus only on the security policies
that users can configure.

Note: Apple uses the term Paired One True recoveryOS (1TR) to indicate a boot into the
paired recoveryOS using a physical power button single-press-and-hold. This differs from
a normal recoveryOS boot, which happens using NVRAM or double-press-and-hold, or
which may happen when errors occur on startup. The physical button press of a specific
kind increases trust in that the boot environment isn't reachable by a software-only
attacker who has broken into macOS.

LocalPolicy Nonce Hash (Ipnh)
+ Type: OctetString (48)

+ Mutable environments: 1TR, recoveryOS, macOS

- Description: The 1pnh is used for anti-replay of the LocalPolicy. This is an SHA384
hash of the LocalPolicy Nonce (LPN), which is stored in the Secure Storage Component
and accessible using the Secure Enclave Boot ROM or Secure Enclave. The raw nonce
is never visible to the Application Processor, only to the sepOS. An attacker wanting
to convince LLB that a previous LocalPolicy they had captured was valid would need
to place a value into the Secure Storage Component, which hashes to the same 1pnh
value found in the LocalPolicy they want to replay. Normally, there is a single LPN valid
on the system — except during software updates, when two are simultaneously valid —
to allow for the possibility of falling back to booting the old software in the event of an
update error. When any LocalPolicy for any operating system is changed, all policies are
re-signed with the new /pnh value corresponding to the new LPN found in the Secure
Storage Component. This change happens when the user changes security settings or
creates new operating systems with a new LocalPolicy for each.

39

Apple Platform Security

RemotePolicy Nonce Hash (rpnh)

Type: OctetString (48)
Mutable environments: 1TR, recoveryOS, macOS

Description: The rpnh behaves the same way as the 1pnh but is updated only when the
remote policy is updated, such as when changing the state of Find My enrolment. This
change happens when the user changes the state of Find My on their Mac.

recoveryOS Nonce Hash (ronh)

.

Type: OctetString (48)
Mutable environments: 1TR, recoveryOS, macOS

Description: The ronh behaves the same way as the Ipnh, but is found exclusively in
the LocalPolicy for system recoveryOS. It's updated when the system recoveryOS is
updated, such as on software updates. A separate nonce from the 1pnh and rpnhis
used so that when a device is put into a disabled state by Find My, existing operating
systems can be disabled (by removing their LPN and RPN from the Secure Storage
Component), while still leaving the system recoveryOS bootable. In this way, the
operating systems can be re-enabled when the system owner proves their control over
the system by putting in their iCloud password used for the Find My account. This
change happens when a user updates the system recoveryOS or creates new operating
systems.

Next Stage Image4 Manifest Hash (nsih)

Type: OctetString (48)
Mutable environments: 1TR, recoveryOS, macOS

Description: The nsih field represents an SHA384 hash of the Image4 manifest data
structure that describes the booted macOS. The macOS Image4 manifest contains
measurements for all the boot objects — such as iBoot, the static trust cache, device
tree, Boot Kernel Collection and signed system volume (SSV) volume root hash. When
LLB is directed to boot a given macQS, it's designed to ensure that the hash of the
macOS Image4 manifest attached to iBoot matches what's captured in the nsih field
of the LocalPolicy. In this way, the nsih captures the user intention of what operating
system the user has created a LocalPolicy for. Users change the nsih value implicitly
when they perform a software update.

Auxiliary Kernel Collection (AuxKC) Policy Hash (auxp)

Type: OctetString (48)
Mutable environments: macOS

Description: The auxp is an SHA384 hash of the user-authorised kext list (UAKL) policy.
This is used at AuxKC generation time to help ensure that only user-authorised kexts
are included in the AuxKC. smb2 is a prerequisite for setting this field. Users change

the auxp value implicitly when they change the UAKL by approving a kext from the
Security & Privacy pane in System Preferences.

40

Apple Platform Security

Auxiliary Kernel Collection (AuxKC) Image4 Manifest Hash (auxi)

Type: OctetString (48)
Mutable environments: macOS

Description: After the system verifies that the UAKL hash matches what'’s found in

the auxp field of the LocalPolicy, it requests that the AuxKC be signed by the Secure
Enclave processor application that's responsible for LocalPolicy signing. Next, an
SHA384 hash of the AuxKC Image4 manifest signature is placed into the LocalPolicy to
avoid the potential for mixing and matching previously signed AuxKCs to an operating
system at boot time. If iBoot finds the auxi field in the LocalPolicy, it attempts to load
the AuxKC from storage and validate its signature. It also verifies that the hash of the
Image4 manifest attached to the AuxKC matches the value found in the auxi field. If
the AuxKC fails to load for any reason, the system continues to boot without this boot
object and so without any third-party kexts loaded. The auxp field is a prerequisite for
setting the auxi field in the LocalPolicy. Users change the auxi value implicitly when
they change the UAKL by approving a kext from the Security & Privacy pane in System
Preferences.

Auxiliary Kernel Collection (AuxKC) Receipt Hash (auxr)

Type: OctetString (48)
Mutable environments: macOS

Description: The auxr is an SHA384 hash of the AuxKC receipt, which indicates the
exact set of kexts that were included into the AuxKC. The AuxKC receipt can be a
subset of the UAKL, because kexts can be excluded from the AuxKC even if they're
user authorised if they're known to be used for attacks. In addition, some kexts that can
be used to break the user-kernel boundary may lead to decreased functionality, such
as an inability to use Apple Pay or play 4K and HDR content. Users who want these
capabilities opt in to a more restrictive AuxKC inclusion. The auxp field is a prerequisite
for setting the auxr field in the LocalPolicy. Users change the auxr value implicitly
when they build a new AuxKC from the Security & Privacy pane in System Preferences.

CustomOS Image4 Manifest Hash (coih)

.

Type: OctetString (48)
Mutable environments: 1TR

Description: The coih is an SHA384 hash of CustomOS Image4 manifest. The payload
for that manifest is used by iBoot (instead of the XNU kernel) to transfer control.
Users change the coih value implicitly when they use the kmutil configure-boot
command-line tool in 1TR.

APFS volume group UUID (vuid)

Type: OctetString (16)
Mutable environments: 1TR, recoveryOS, macOS

Description: The vuid indicates the volume group the kernel should use as root. This
field is primarily informational and isn't used for security constraints. This vuid is set
by the user implicitly when creating a new operating system install.

41

Apple Platform Security

Key encryption key (KEK) Group UUID (kuid)

Type: OctetString (16)
Mutable environments: 1TR, recoveryOS, macOS

Description: The kuid indicates the volume that was booted. The key encryption key
has typically been used for Data Protection. For each LocalPolicy, it's used to protect
the LocalPolicy signing key. The kuid is set by the user implicitly when creating a new
operating system install.

Paired recoveryOS Trusted Boot Policy Measurement (prot)

Type: OctetString (48)
Mutable environments: 1TR, recoveryOS, macOS

Description: A paired recoveryOS Trusted Boot Policy Measurement (TBPM) is a special
iterative SHA384 hash calculation over the Image4 manifest of a LocalPolicy, excluding
nonces, in order to give a consistent measurement over time (because nonces like 1pnh
are frequently updated). The prot field, which is found only in each macOS LocalPolicy,
provides a pairing to indicate the recoveryOS LocalPolicy that corresponds to the
macOS LocalPolicy.

Has Secure Enclave Signed recoveryOS LocalPolicy (hrip)

.

Type: Boolean
Mutable environments: 1TR, recoveryOS, macOS

Description: The hrlp indicates whether or not the prot value (above) is the
measurement of a Secure Enclave-signed recoveryOS LocalPolicy. If not, then the
recoveryOS LocalPolicy is signed by the Apple online signing server, which signs things
such as macOS Image4 files.

Local Operating System Version (love)

Type: Boolean
Mutable environments: 1TR, recoveryOS, macOS

Description: The love indicates the OS version that the LocalPolicy is created for. The
version is obtained from the next state manifest during LocalPolicy creation and is used
to enforce recoveryOS pairing restrictions.

Secure Multi-Boot (smbO0)

Type: Boolean
Mutable environments: 1TR, recoveryOS

Description: If smb@ is present and true, LLB allows the next stage Image4 manifest to
be globally signed instead of requiring a personalised signature. Users can change this
field with Startup Security Utility or bputil to downgrade to Reduced Security.

42

Apple Platform Security

Secure Multi-Boot (smb1)

Type: Boolean
Mutable environments: 1TR

Description: If smbl is present and true, iBoot allows objects such as a custom kernel
collection to be Secure Enclave signed with the same key as the LocalPolicy. Presence
of smb@ is a prerequisite for presence of smb1. Users can change this field using
command-line tools such as csrutil or bputil to downgrade to Permissive Security.

Secure Multi-Boot (smb2)

Type: Boolean
Mutable environments: 1TR

Description: If smb2 is present and true, iBoot allows the Auxiliary Kernel Collection to
be Secure Enclave signed with the same key as the LocalPolicy. The presence of smb@
is a prerequisite for the presence of smb2. Users can change this field using Startup
Security Utility or bputil to downgrade to Reduced Security and enable third-party
kexts.

Secure Multi-Boot (smb3)

Type: Boolean
Mutable environments: 1TR

Description: If smb3 is present and true, a user at the device has opted in to mobile
device management (MDM) control of their system. Presence of this field makes

the LocalPolicy-controlling Secure Enclave processor application accept MDM
authentication instead of requiring local user authentication. Users can change this field
using Startup Security Utility or bputil to enable managed control over third-party
kexts and software updates. (In macOS 11.2 or later, MDM can also initiate an update to
the latest macOS version if the current security mode is Full Security.)

Secure Multi-Boot (smb4)

Type: Boolean
Mutable environments: macOS

Description: If smb4 is present and true, the device has opted in to MDM control of
the operating system using the Apple School Manager, Apple Business Manager or
Apple Business Essentials. Presence of this field makes the LocalPolicy-controlling
Secure Enclave application accept MDM authentication instead of requiring local
user authentication. This field is changed by the MDM solution when it detects that a
device's serial number appears in any of those three services.

System Integrity Protection (sip0)

Type: 64 bit unsigned integer
Mutable environments: 1TR

Description: The sip® holds the existing System Integrity Protection (SIP) policy bits
that previously were stored in NVRAM. New SIP policy bits are added here (instead of
using LocalPolicy fields like the below) if they're used only in macOS and not used by
LLB. Users can change this field using csrutil from 1TR to disable SIP and downgrade
to Permissive Security.

43

Apple Platform Security

System Integrity Protection (sip1)
+ Type: Boolean
- Mutable environments: 1TR

- Description: If siplis present and true, iBoot will allow failures to verify the SSV
volume root hash. Users can change this field using csrutil or bputil from 1TR.

System Integrity Protection (sip2)
« Type: Boolean
« Mutable environments: 1TR

« Description: If sip2 is present and true, iBoot will not lock the Configurable Text Read-
only Region (CTRR) hardware register that marks kernel memory as non-writable. Users
can change this field using csrutil or bputil from 1TR.

System Integrity Protection (sip3)
. Type: Boolean
+ Mutable environments: 1TR

- Description: If sip3 is present and true, iBoot will not enforce its built-in allow list for
the boot-args NVRAM variable, which would otherwise filter the options passed to the
kernel. Users can change this field using csrutil or bputil from 1TR.

Certificates and RemotePolicy

As described in LocalPolicy signing-key creation and management, the LocalPolicy Image4
also contains the Owner Identity Certificate (OIC) and the embedded RemotePolicy.

44

Apple Platform Security

Intel-based Mac computers

Boot process for an Intel-based Mac

Intel-based Mac with an Apple T2 Security Chip

When an Intel-based Mac computer with the Apple T2 Security Chip is turned on, the

chip performs a secure boot from its Boot ROM in the same fashion as iPhone, iPad and a
Mac with Apple silicon. This verifies the iBoot bootloader and is the first step in the chain
of trust. iBoot checks the kernel and kernel extension code on the T2 chip, which then
checks the Intel UEFI firmware. The UEFI firmware and the associated signature are initially
available only to the T2 chip.

Boot ROM evaluates iBoot signature

!

iBoot evaluates T2 kernel cache signature

l

T2 kernel cache evaluates UEFI firmware signature

l

UEFI firmware

eSPI T2 chip

Intel CPU

UEFI firmware evaluates boot.efi signature

l

boot.efi evaluates macOS immutable kernel signature

!

macOS

After verification, the UEFI firmware image is mapped into a portion of the T2 chip memory.
This memory is made available to the Intel CPU through the enhanced Serial Peripheral
Interface (eSPI). When the Intel CPU first boots, it fetches the UEFI firmware through the eSPI
from the integrity-checked, memory-mapped copy of the firmware located on the T2 chip.

The evaluation of the chain of trust continues on the Intel CPU, with the UEFI firmware
evaluating the signature for boot.efi, which is the macOS bootloader. The Intel-resident
macOS secure boot signatures are stored in the same Image4 format used for iOS, iPadOS
and T2 chip secure boot, and the code that parses the Image4 files is the same hardened
code from the current iOS and iPadOS secure boot implementation. Boot.efi in turn verifies
the signature of a new file, called immutablekernel. When secure boot is enabled, the
immutablekernel file represents the complete set of Apple kernel extensions required to
boot macOS. The secure boot policy terminates at the handoff to the immutablekernel and,
after that, macOS security policies (such as System Integrity Protection and signed kernel
extensions) take effect.

45

If there are any errors or failures in this process, the Mac enters Recovery mode, Apple
T2 Security Chip Recovery mode or Apple T2 Security Chip Device Firmware Upgrade
(DFU) mode.

Microsoft Windows on an Intel-based Mac with a T2 chip

By default, an Intel-based Mac that supports secure boot trusts only content signed by
Apple. However, to improve the security of Boot Camp installations, Apple also supports
secure booting for Windows. The Unified Extensible Firmware Interface (UEFi) firmware
includes a copy of the Microsoft Windows Production CA 2011 certificate used to
authenticate Microsoft bootloaders.

Note: There is currently no trust provided for the Microsoft Corporation UEFI CA 2011 that
would allow verification of code signed by Microsoft partners. This UEFI CA is commonly
used to verify the authenticity of bootloaders for other operating systems such as Linux
variants.

Support for secure boot of Windows isn't enabled by default; instead, it's enabled using
Boot Camp Assistant (BCA). When a user runs BCA, macQOS is reconfigured to trust
Microsoft first-party signed code during boot. After BCA completes, if macOS fails to
pass the Apple first-party trust evaluation during secure boot, the UEFI firmware attempts
to evaluate the trust of the object according to UEFI secure boot formatting. If the trust
evaluation succeeds, the Mac proceeds and boots Windows. If not, the Mac enters
recoveryOS and informs the user of the trust evaluation failure.

Intel-based Mac computers without a T2 chip

An Intel-based Mac without a T2 chip doesn’t support secure boot. Therefore, the Unified
Extensible Firmware Interface (UEFi) firmware loads the macOS booter (boot.efi) from the
file system without verification, and the booter loads the kernel (prelinkedkernel) from the
file system without verification. To protect the integrity of the boot chain, users should
enable all of the following security mechanisms:

- System Integrity Protection (SIP): Enabled by default, this protects the booter and
kernel against malicious writes from within a running macOS.

- FileVault: This can be enabled in two ways: by the user or by a mobile device
management (MDM) administrator. This protects against a physically present attacker
using Target Disk Mode to overwrite the booter.

- Firmware Password: This can be enabled in two ways: by the user or by an MDM
administrator. This helps prevent a physically present attacker from launching
alternative boot modes such as recoveryOS, Single User Mode or Target Disk Mode
from which the booter can be overwritten. This also helps prevent booting from
alternative media, by which an attacker could run code to overwrite the booter.

Key encryption Volume

User password =—p e — encryption key —3p Volume data

Apple Platform Security 46

Apple Platform Security

Boot modes of an Intel-based Mac with an Apple T2 Security Chip

An Intel-based Mac with an Apple T2 Security Chip has a variety of boot modes that can
be entered at boot time by pressing key combinations, which are recognised by the UEFI
firmware or booter. Some boot modes, such as Single User Mode, won't work unless the
security policy is changed to No Security in Startup Security Utility.

Mode

macOS boot

Startup Manager

Target Disk Mode
(TDM)

Single User Mode

recoveryOS

Internet recoveryOS

Diagnostics

Internet Diagnostics

Windows boot

Key combo

None

Option (~)

Command (%)-S

Command (s)-R

Option (~)-Command (%)-R

Option (~)-D

None

Description

The UEFI firmware hands off to the macOS booter

(a UEFI application), which hands off to the macOS
kernel. On standard booting of a Mac with FileVault
enabled, the macOS booter presents the Login Window
interface, which takes the password to decrypt the
storage.

The UEFI firmware launches the built-in UEFI
application that presents the user with a boot device
selection interface.

The UEFI firmware launches the built-in UEFI
application that exposes the internal storage device
as a raw, block-based storage device over FireWire,
Thunderbolt, USB or any combination of the three
(depending on the Mac model).

The macOS kernel passes the —s flag in launchd's
argument vector, then launchd creates the single-user
shell in the Console app'’s tty.

Note: If the user exits the shell, macOS continues boot
to the Login Window.

The UEFI firmware loads a minimal macOS from a
signed disk image (.dmg) file on the internal storage
device.

The signed disk image is downloaded from the internet
using HTTP.

The UEFI firmware loads a minimal UEFI diagnostic
environment from a signed disk image file on the
internal storage device.

The signed disk image is downloaded from the internet
using HTTP.

If Windows has been installed using Boot Camp, the
UEFI firmware hands off to the Windows booter, which
hands off to the Windows kernel.

47

Apple Platform Security

Startup Security Utility on a Mac with an Apple T2 Security Chip

Overview

On an Intel-based Mac with an Apple T2 Security Chip, Startup Security Utility handles a
number of security policy settings. The utility is accessible by booting into recoveryOS and
selecting Startup Security Utility from the Utilities menu and protects supported security
settings from easy manipulation by an attacker.

Startup Security Utility

Firmware password protection is off.

Turn on a firmware password to prevent this computer from starting up from a
n different hard disk, CD or DVD without the password.

Turn On Firmware Password...

Secure Boot

® Full Security

Ensures that only your current OS, or signed operating system software currently
trusted by Apple, can run. This mode requires a network connection at software
installation time.

Medium Security
Allows any version of signed operating system software ever trusted by Apple to run.

No Security
Does not enforce any requirements on the bootable OS.

Allowed Boot Media

® Disallow booting from external or removable media
Restricts the ability to boot from any device not protected by the T2 such as USB and
Thunderbolt drives or internally connected PCle or SATA drives.

Allow booting from external or removable media
Does not restrict the ability to boot from any devices.

Critical policy changes require authentication, even in Recovery mode. When Startup Security
Utility is first opened, it prompts the user to enter an administrator password from the primary
macOS installation associated with the currently booted recoveryOS. If no administrator
exists, one must be created before the policy can be changed. The T2 chip requires that
the Mac computer be currently booted into recoveryOS and that an authentication with a
Secure Enclave-backed credential has occurred before such a policy change can be made.
Security policy changes have two implicit requirements. RecoveryOS must:

- Be booted from a storage device directly connected to the T2 chip, because partitions
on other devices don't have Secure Enclave-backed credentials bound to the internal
storage device.

- Reside on an APFS-based volume, because there is support only for storing the
Authentication in Recovery credentials sent to the Secure Enclave on the "Preboot”
APFS volume of a drive. HFS plus-formatted volumes can't use secure boot.

This policy is shown only in Startup Security Utility on an Intel-based Mac with a T2 chip.
Although most use cases shouldn't require changes to the secure boot policy, users are
ultimately in control of their device's settings and may choose, depending on their needs,
to disable or downgrade the secure boot functionality on their Mac.

Secure boot policy changes made from within this app apply only to the evaluation of the
chain of trust being verified on the Intel processor. The option “Secure boot the T2 chip” is
always in effect.

Secure boot policy can be configured to one of three settings: Full Security, Medium
Security and No Security. No Security completely disables secure boot evaluation on the
Intel processor and allows the user to boot whatever they want.

48

Apple Platform Security

Full Security boot policy

Full Security is the default boot policy, and it behaves much like iOS and iPadOS or Full
Security on a Mac with Apple silicon. At the time that software is downloaded and prepared
to install, it is personalised with a signature that includes the Exclusive Chip Identification
(ECID) — a unique ID specific to the T2 chip in this case — as part of the signing request.
The signature given back by the signing server is then unique and usable only by that
particular T2 chip. The Unified Extensible Firmware Interface (UEFi) firmware is designed to
ensure that when the Full Security policy is in effect, a given signature isn’t just signed by
Apple but is signed for this specific Mac, essentially tying that version of macOS to that Mac.
This helps prevent rollback attacks as described for Full Security on a Mac with Apple silicon.

Medium Security boot policy

Medium Security boot policy is somewhat like a traditional UEFI secure boot, in which

a vendor (here, Apple) generates a digital signature for the code to assert it came from
the vendor. This way, attackers are prevented from inserting unsigned code. We refer to
this signature as a "global” signature because it can be used on any Mac, for any amount
of time, for a Mac that currently has a Medium Security policy set. Neither iOS, iPadOS
nor the T2 chip itself support global signatures. This setting doesn't attempt to prevent
rollback attacks.

Media boot policy

Media boot policy exists only on an Intel-based Mac with a T2 chip and is independent of
the secure boot policy. So even if a user disables secure boot, this doesn’t change the
default behaviour of preventing anything other than the storage device directly connected
to the T2 chip to boot the Mac. Media boot policy is not required on a Mac with Apple
silicon. For more information, see Startup Disk security policy control.

Firmware password protection in an Intel-based Mac

macOS on Intel-based Mac computers with an Apple T2 Security Chip supports the use
of a Firmware Password to help prevent unintended modifications of firmware settings
on a specific Mac. The Firmware Password is designed to prevent selecting alternative
boot modes such as booting into recoveryOS or Single User Mode, booting from an
unauthorised volume or booting into Target Disk Mode.

Note: The firmware password isn't required on a Mac with Apple silicon because the critical
firmware functionality it restricted has been moved into the recoveryOS and (when FileVault
is enabled) recoveryQOS requires user authentication before its critical functionality can be
reached.

The most basic mode of firmware password can be reached from the recoveryOS Firmware
Password Utility on an Intel-based Mac without a T2 chip, and from the Startup Security
Utility on an Intel-based Mac with a T2 chip. Advanced options (such as the ability to
prompt for the password at every boot) are available from the firmwarepasswd command-
line tool in macOS.

Setting a Firmware Password is especially important to reduce the risk of attacks on Intel-
based Mac computers without a T2 chip from a physically present attacker. The Firmware
Password can help prevent an attacker from booting to recoveryOS, from where they could
otherwise disable System Integrity Protection (SIP). And by restricting boot of alternative
media, an attacker can't execute privileged code from another operating system to attack
peripheral firmwares.

49

A firmware password reset mechanism exists to help users who forget their password.
Users press a key combination at startup, and are presented with a model-specific string
to provide to AppleCare. AppleCare digitally signs a resource that is signature checked by
the Uniform Resource Identifier (URI). If the signature is validated and the content is for the
specific Mac, the UEFI firmware removes the firmware password.

For users who want no one but themselves to remove their firmware password by

software means, the —disable-reset—capability option has been added to the
firmwarepasswd command-line tool in macOS 10.15. Before setting this option, users
must acknowledge that if the password is forgotten and needs removal, the user must
bear the cost of the logic board replacement necessary to achieve this. Organisations that
want to protect their Mac computers from external attackers and from employees must set
a firmware password on organisation-owned systems. This can be accomplished on the
device in any of the following ways:

- At provisioning time, by manually using the firmwarepasswd command-line tool
- With third-party management tools that use the firmwarepasswd command-line tool

- Using mobile device management (MDM)

recoveryOS and diagnostics environments for an Intel-based Mac

recoveryOS

The recoveryOS is completely separate from the main macOS and the entire contents

are stored in a disk image file named BaseSystem.dmg. There is also an associated
BaseSystem.chunklist, which is used to verify the integrity of the BaseSystem.dmg. The
chunklist is a series of hashes for 10MB chunks of the BaseSystem.dmg. The Unified
Extensible Firmware Interface (UEFi) firmware evaluates the signature of the chunklist file
and then evaluates the hash one chunk at a time from the BaseSystem.dmg. This helps
ensure that it matches the signed content present in the chunklist. If any of these hashes
don't match, booting from the local recoveryOS is aborted and the UEFI firmware attempts
to boot from Internet recoveryOS instead.

If the verification is successfully completed, the UEFI firmware mounts the BaseSystem.
dmg as a RAM disk and launches the boot.efi file that's in it. There's no need for the UEFI
firmware to do a specific check of the boot.efi, nor for the boot.efi to do a check of the
kernel, because the completed contents of the operating system (of which these elements
are only a subset) have already been integrity checked.

Apple Diagnostics

The procedure for booting the local diagnostic environment is mostly the same as
launching the recoveryOS. Separate AppleDiagnostics.dmg and AppleDiagnostics.chunklist
files are used, but they're verified in the same way as the BaseSystem files. Instead of
launching boot.efi, the UEFI firmware launches a file inside the disk image (.dmg file)
named diags.efi, which is in turn responsible for invoking a variety of other UEFI drivers
that can interface with and check for errors in the hardware.

Apple Platform Security 50

Apple Platform Security

Internet recoveryOS and diagnostic environment

If an error has occurred in the launching of the local recovery or diagnostic environments,
the UEFI firmware attempts to download the images from the internet instead. (A user
can also specifically request the images to be fetched from the internet using special

key sequences held at boot.) The integrity validation of the disk images and chunklists
downloaded from the OS Recovery Server is performed the same way as with images
retrieved from a storage device.

While the connection to the OS Recovery Server is done using HTTP, the complete
downloaded contents are still integrity checked as previously described, and as such are
protected against manipulation by an attacker with control of the network. In the event
that an individual chunk fails integrity verification, it is re-requested from the OS Recovery
Server 11 times, before giving up and displaying an error.

When the internet recovery and diagnostic modes were added to Mac computers in 2011, it
was decided that it would be better to use the simpler HTTP transport and handle content
authentication using the chunklist mechanism, rather than implement the more complicated
HTTPS functionality in the UEFI firmware and thus increase the firmware's attack surface.

Signed system volume security in i0S, iPadOS
and macOS

In macOS 10.15, Apple introduced the read-only system volume, a dedicated, isolated
volume for system content. macOS 11 or later adds strong cryptographic protections to
system content with a signed system volume (SSV). SSV features a kernel mechanism that
verifies the integrity of the system content at runtime and rejects any data — code and
non-code — without a valid cryptographic signature from Apple. Starting in iOS 15 and
iPadOS 15, the system volume on an iOS and iPadOS device also gains the cryptographic
protection of a signed system volume.

SSV not only helps prevent tampering with any Apple software that's part of the operating
system, it also makes macOS software updates more reliable and much safer. And because
SSV uses APFS (Apple File System) snapshots, if an update can't be performed, the old
system version can be restored without reinstallation.

Since its introduction, APFS has provided file-system metadata integrity using non-
cryptographic checksums on the internal storage device. SSV strengthens the integrity
mechanism by adding cryptographic hashes, thus extending it to encompass every byte

of file data. Data from the internal storage device (including file-system metadata) is
cryptographically hashed in the read path, and the hash is then compared with an expected
value in the file-system metadata. In case of mismatch, the system assumes the data has
been tampered with and won't return it to the requesting software.

Each SSV SHA256 hash is stored in the main file-system metadata tree, which is itself
hashed. And because each node of the tree recursively verifies the integrity of the hashes
of its children — similar to a binary hash (Merkle) tree — the root node's hash value,
called a seal, therefore encompasses every byte of data in the SSV, which means the
cryptographic signature covers the entire system volume.

51

During macOS installation and update, the seal is recomputed from the file system on
device and that measurement is verified against the measurement Apple signed. On a

Mac with Apple silicon, the bootloader verifies the seal before transferring control to the
kernel. On an Intel-based Mac with an Apple T2 Security Chip, the bootloader forwards

the measurement and signature to the kernel, which then verifies the seal directly before
mounting the root file system. In either case, if the verification fails, the startup process
halts and the user is prompted to reinstall macOS. This procedure is repeated at every boot
unless the user has elected to enter a lower security mode and has separately chosen to
disable the signed system volume.

During iOS and iPadOS software updates, the system volume is prepared and recomputed
in a similar fashion. The iOS and iPadOS bootloaders verify that the seal is intact and that it
matches an Apple-signed value before allowing the device to start the kernel. Mismatches
at boot prompt the user to update the system software on the device. Users aren’t allowed
to disable the protection of a signed system volume on iOS and iPadOS.

SSV and code signing

Code signing is still present and enforced by the kernel. The signed system volume provides
protection when any bytes at all are read from the internal storage device. In contrast, code
signing provides protection when Mach objects are memory mapped as executable. Both
SSV and code signing protect executable code on all read and execute paths.

SSV and FileVault

In macOS 11, equivalent at-rest protection for system content is provided by the SSV, and
therefore the system volume no longer needs to be encrypted. Any modifications made to
the file system while it's at rest will be detected by the file system when they're read. If the
user has enabled FileVault, the user’s content on the data volume is still encrypted with a
user-provided secret.

If the user chooses to disable the SSV, the system at rest becomes vulnerable to
tampering, and this tampering could enable an attacker to extract encrypted user data
when the system next starts up. Therefore the system won’t permit the user to disable the
SSV if FileVault is enabled. Protection while at rest must be enabled or disabled for both
volumes in a consistent manner.

In macOS 10.15 or earlier, FileVault protects operating system software while at rest by
encrypting user and system content with a key protected by a user-provided secret.
This protects against an attacker with physical access to the device from accessing or
effectively modifying the file system containing system software.

SSV and a Mac with an Apple T2 Security Chip

On a Mac with an Apple T2 Security Chip, only macQOS itself is protected by the SSV. The
software that runs on the T2 chip and verifies macOS is protected by secure boot.

Apple Platform Security 52

Apple Platform Security

Secure software updates

Security is a process; it isn't enough to reliably boot the operating system version installed
at the factory — there must also exist a mechanism to quickly and securely obtain the
latest security updates. Apple regularly releases software updates to address emerging
security concerns. Users of iOS and iPadOS devices receive update notifications on the
device. Mac users find available updates in System Preferences. Updates are delivered
wirelessly, for rapid adoption of the latest security fixes.

The update process

The update process uses the same hardware-based root of trust that secure boot uses
and is designed to install only Apple-signed code. The update process also uses system
software authorisation to check that only copies of operating system versions that are
actively being signed by Apple can be installed on iOS and iPadOS devices or on Mac
computers with the Full Security setting configured as the secure boot policy in Startup
Security Utility. With these secure processes in place, Apple can stop signing older
operating system versions with known vulnerabilities and help prevent downgrade attacks.

For greater software update security, when the device to be upgraded is physically
connected to a Mac, a full copy of iOS or iPadOS is downloaded and installed. But for over-
the-air (OTA) software updates, only the components required to complete an update are
downloaded, improving network efficiency by not downloading the entire operating system.
What's more, software updates can be cached on a Mac with macOS 10.13 or later with
Content Caching turned on, so that iOS and iPadOS devices don't need to re-download the
necessary update over the internet. (They still need to contact Apple servers to complete
the update process.)

Personalised update process

During upgrades and updates, a connection is made to the Apple installation authorisation
server, which includes a list of cryptographic measurements for each part of the
installation bundle to be installed (for example, iBoot, the kernel and the operating system
image), a random anti-replay value (the nonce) and the device's unique Exclusive Chip
Identification (ECID).

53

Apple Platform Security

The authorisation server checks the presented list of measurements against versions
whose installation is permitted and, if it finds a match, adds the ECID to the measurement
and signs the result. The server passes a complete set of signed data to the device as
part of the upgrade process. Adding the ECID “personalises” the authorisation for the
requesting device. By authorising and signing only for known measurements, the server
helps ensure that the update takes place exactly as Apple provided.

------ >

Cryptographic measurements list
— iBoot
kernel
operating system image
anti-replay value Apple
ECID Authorisation
server

Signed authorisation response
signature for software

anti-replay value
.]
ECID

The boot-time chain-of-trust evaluation verifies that the signature comes from Apple and
that the measurement of the item loaded from the storage device, combined with the
device's ECID, matches what was covered by the signature. These steps are designed to
ensure that, on devices that support personalisation, the authorisation is for a specific
device and that an older operating system or firmware version from one device can’t be

copied to another. The nonce helps prevent an attacker from saving the server’s response

and using it to tamper with a device or otherwise alter the system software.

The personalisation process is why a network connection to Apple is always required to
update any device with Apple-designed silicon, including an Intel-based Mac with the
Apple T2 Security Chip.

Finally, the user's data volume is never mounted during a software update to help prevent
anything being read from or written to that volume during updates.

On devices with the Secure Enclave, that hardware similarly uses system software
authorisation to check the integrity of its software and is designed to prevent downgrade
installations.

54

Apple Platform Security

Operating system integrity

Apple's operating system software is designed with security at its core. This design
includes a hardware root of trust — leveraged to enable secure boot — and a secure
software update process that's quick and safe. Apple's operating systems also use their
purpose-built silicon-based hardware capabilities to help prevent exploitation as the
system runs. These runtime features protect the integrity of trusted code while it is being
executed. In short, Apple's operating system software helps mitigate attack and exploit
techniques — whether those originate from a malicious app, from the web or through any
other channel. Protections listed here are available on devices with supported Apple-
designed SoCs, including iOS, iPadQOS, tvOS, watchOS, and now macOS on a Mac with
Apple silicon.

Feature A10 A11, S3 A12, S4 A13, S5 A14, A15, M1 Family
S6, S7

Kernel 9 Q 9 9 9 9

Integrity
Protection

Fast 9] o] o

Permission
Restrictions

System 0 Q Q Q

Coprocessor
Integrity
Protection

Pointer 0 Q Q Q

Authentication
Codes

Page Q 0 Q Q See Note

Protection below.
Layer

Note: Page Protection Layer (PPL) requires that the platform execute only signed and
trusted code; this is a security model that isn't applicable on macOS.

Kernel Integrity Protection

After the operating system kernel completes initialisation, Kernel Integrity Protection (KIP)
is enabled to help prevent modifications of kernel and driver code. The memory controller
provides a protected physical memory region that iBoot uses to load the kernel and kernel
extensions. After startup is complete, the memory controller denies writes to the protected
physical memory region. The Application Processor’s Memory Management Unit (MMU)

is configured to help prevent mapping privileged code from physical memory outside the
protected memory region and to help prevent writeable mappings of physical memory
within the kernel memory region.

To prevent reconfiguration, the hardware used to enable KIP is locked after the boot
process is complete.

55

Apple Platform Security

Fast Permission Restrictions

Starting with the Apple A11 Bionic and S3 SoCs, a new hardware primitive was introduced.
This primitive, Fast Permission Restrictions, includes a CPU register that quickly restricts
permissions per thread. With Fast Permission Restrictions (also known as APRR registers),
supported operating systems can remove execute permissions from memory without the
overhead of a system call and a page table walk or flush. These registers provide one more
level of mitigation for attacks from the web — particularly for code compiled at runtime
(just-in-time compiled) — because memory can’t be effectively executed at the same time
it's being read from and written to.

System Coprocessor Integrity Protection

Coprocessor firmware handles many critical system tasks — for example, the Secure
Enclave, the image sensor processor and the motion coprocessor. Therefore its security
is a key part of the security of the overall system. To prevent modification of coprocessor
firmware, Apple uses a mechanism called System Coprocessor Integrity Protection (SCIP).

SCIP works much like Kernel Integrity Protection (KIP): at boot time, iBoot loads each
coprocessor’s firmware into a protected memory region, one that’s reserved and separate
from the KIP region. iBoot configures each coprocessor’'s memory unit to help prevent:

- Executable mappings outside its part of the protected memory region
- Writable mappings inside its part of the protected memory region

Also at boot time, to configure SCIP for the Secure Enclave, the Secure Enclave operating
system is used. After the boot process is complete, the hardware used to enable SCIP is
locked. This is designed to prevent reconfiguration.

Pointer Authentication Codes

Pointer Authentication Codes (PACs) are used to protect against exploitation of memory
corruption bugs. System software and built-in apps use PAC to help prevent modification
of function pointers and return addresses (code pointers). PAC uses five secret 128-bit
values to sign kernel instructions and data, and each user space process has its own B
keys. Items are salted and signed as indicated below.

Item Key Salt

Function Return Address 1B Storage address

Function Pointers 1A 0

Block Invocation Function 1A Storage address

Objective-C Method Cache 1B Storage address + Class + Selector
C++ V-Table Entries 1A Storage address + Hash (mangled

method name)

Computed Goto Label 1A Hash (function name)
Kernel Thread State GA

User Thread State Registers 1A Storage address

C++ V-Table Pointers DA 0

56

Apple Platform Security

The signature value is stored in the unused padding bits at the top of the 64-bit pointer.
The signature is verified before use and the padding is restored to help ensure a
functioning pointer address. Failure to verify results in an abort. This verification increases
the difficulty of many attacks, such as a return-oriented programming (ROP) attack, which
attempts to trick the device into executing existing code maliciously by manipulating
function return addresses stored on the stack.

Page Protection Layer

Page Protection Layer (PPL) in iOS, iPadOS and watchOS is designed to prevent user
space code from being modified after code signature verification is complete. Building

on Kernel Integrity Protection and Fast Permission Restrictions, PPL manages the page
table permission overrides to make sure only the PPL can alter protected pages containing
user code and page tables. The system provides a massive reduction in attack surface by
supporting system-wide code integrity enforcement, even in the face of a compromised
kernel. This protection isn't offered in macOS because PPL is only applicable on systems
where all executed code must be signed.

Additional macOS system security capabilities

Additional macOS system security capabilities

macOS operates on a broader set of hardware (for example, Intel-based CPUs, Intel-based
CPUs in combination with the Apple T2 Security Chip, and Apple silicon-based SoCs)

and supports a range of general-purpose computing use cases. Whereas some users use
only the basic pre-installed apps or those available from the App Store, others are kernel
hackers who need to disable essentially all platform protections so they can run and test
their executing code as with the highest levels of trust. Most fall somewhere between and
many of those have peripherals and software that require varying levels of access. Apple
designed the macOS platform with an integrated approach to hardware, software and
services — a platform that provides security by design and makes it simple to configure,
deploy and manage, but that retains the configurability that users expect. macOS also
includes the key security technologies that an IT professional needs to help protect
corporate data and integrate within secure enterprise networking environments.

The following capabilities support and help secure the varied needs of macOS users.
They include:

- Signed system volume security

- System Integrity Protection

« Trust caches

- Protection for peripherals

- Rosetta 2 (automatic translation) support and security for a Mac with Apple silicon
- DMA support and protections

- Kernel extension (kext) support and security

« Option ROM support and security

- UEFI firmware security for Intel-based Mac computers

57

System Integrity Protection

macOS utilises kernel permissions to limit writability of critical system files with a feature
called System Integrity Protection (SIP). This feature is separate and in addition to the
hardware-based Kernel Integrity Protection (KIP) available on a Mac with Apple silicon,
which protects modification of the kernel in memory. Mandatory access control technology
is leveraged to provide this and a number of other kernel-level protections, including
sandboxing and Data Vault.

Mandatory access controls

macOS uses mandatory access controls — policies that set security restrictions, created
by the developer, that can't be overridden. This approach is different from discretionary
access controls, which permit users to override security policies according to their
preferences.

Mandatory access controls aren't visible to users but they're the underlying technology
that helps enable several important features, including sandboxing, parental controls,
managed preferences, extensions and System Integrity Protection.

System Integrity Protection

System Integrity Protection restricts components to read-only in specific critical file
system locations to help prevent malicious code from modifying them. System Integrity
Protection is a computer-specific setting that's on by default when a user upgrades to

OS X 10.11 or later. On an Intel-based Mac, disabling it removes protection for all partitions
on the physical storage device. macOS applies this security policy to every process
running on the system, regardless of whether it's running sandboxed or with administrative
privileges.

Trust caches

One of the objects included in the Secure Boot chain is the static trust cache, a trusted
record of all the Mach-0 binaries that are mastered into the signed system volume. Each
Mach-0O is represented by a code directory hash. For efficient searching, these hashes are
sorted before being inserted into the trust cache. The code directory is the result of the
signing operation performed by codesign(1). To enforce the trust cache, SIP must remain
enabled. To disable trust cache enforcement on a Mac with Apple silicon, secure boot must
be configured to Permissive Security.

When a binary is executed (whether as part of spawning a new process or mapping
executable code into an existing process), its code directory is extracted and hashed. If the
resulting hash is found in the trust cache, the executable mappings created for the binary
will be granted platform privileges — that is, they may possess any entitlement and execute
without further verification as to the authenticity of the signature. This is in contrast to

an Intel-based Mac, where platform privileges are conveyed to operating system content
by the Apple certificate that signs the binaries. (This certificate doesn't constrain which
entitlements the binary may possess.)

Apple Platform Security 58

Non-platform binaries (for example, notarised third-party code) must have valid certificate
chains in order to execute, and the entitlements they may possess are constrained by the
signing profile issued to the developer by the Apple Developer Programme.

All binaries shipped within macOS are signed with a platform identifier. On a Mac with
Apple silicon, this identifier is used to indicate that even though the binary is signed by
Apple, its code directory hash must be present in the trust cache in order to execute. On an
Intel-based Mac, the platform identifier is used to perform targeted revocation of binaries
from an older release of macOS; this targeted revocation helps prevent those binaries from
executing on newer versions.

The static trust cache completely locks a set of binaries to a given version of macOS. This
behaviour helps prevent legitimately Apple-signed binaries from older operating systems
from being introduced into newer ones in order for an attacker to gain advantage.

Platform code shipped outside the operating system

Apple ships some binaries — for example, Xcode and the development tools stack — that
aren't signed with a platform identifier. Even so, they're still permitted to execute with
platform privileges on a Mac with Apple silicon and those with a T2 chip. Because this
platform software is shipped independently of macOS, it isn't subject to the revocation
behaviours imposed by the static trust cache.

Loadable trust caches

Apple ships certain software packages with loadable trust caches. These caches have the
same data structure as the static trust cache. But although there’s only one static trust
cache — and its contents are always guaranteed to be locked into read-only ranges after
the kernel's early initialisation is complete — loadable trust caches are added to the system
at runtime.

These trust caches are authenticated either through the same mechanism that
authenticates boot firmware (personalisation using the Apple trusted signing service), or as
globally signed objects (whose signatures don't bind them to a particular device).

One example of a personalised trust cache is the cache shipped with the disk image
that's used to perform field diagnostics on a Mac with Apple silicon. This trust cache is
personalised along with the disk image and loaded into the subject Mac computer’s kernel
while it's booted into a diagnostic mode. The trust cache allows the software within the
disk image to run with platform privilege.

An example of a globally signed trust cache is shipped with macOS software updates. This
trust cache permits a chunk of code within the software update — the update brain — to
run with platform privilege. The update brain performs any work to stage the software
update that the host system lacks the capacity to perform in a consistent fashion across
versions.

Apple Platform Security 59

Apple Platform Security

Peripheral processor security in Mac computers

All modern computing systems have many built-in peripheral processors dedicated to tasks
such as networking, graphics, power management and more. These peripheral processors
are often single-purpose and are much less powerful than the primary CPU. Built-in
peripherals that don't implement sufficient security become an easier target for attackers
to exploit, through which they can persistently infect the operating system. Having infected
a peripheral processor firmware, an attacker could target software on the primary CPU or
directly capture sensitive data (for example, an Ethernet device could see the contents of
packets that aren’t encrypted).

Whenever possible, Apple works to reduce the number of peripheral processors necessary
and to avoid designs that require firmware. But when separate processors with their own
firmware are required, efforts are taken to help ensure an attacker can't persist on that
processor. This can be by verifying the processor in one of two ways:

+ Running the processor so that it downloads verified firmware from the primary CPU on
startup

- Having the peripheral processor implement its own secure boot chain to verify the
peripheral processor firmware every time the Mac starts up

Apple works with vendors to audit their implementations and enhance their designs to
include desired properties such as:

+ Ensuring minimum cryptographic strengths
« Ensuring strong revocation of known bad firmware
- Disabling debug interfaces

- Signing the firmware with cryptographic keys that are stored in Apple-controlled
hardware security modules (HSMs)

In recent years, Apple has worked with some external vendors to adopt the same “Image4”
data structures, verification code and signing infrastructure used by Apple silicon.

When neither storage-free operation nor storage plus secure boot is an option, the design
mandates that firmware updates be cryptographically signed and verified before the
persistent storage can be updated.

Rosetta 2 on a Mac with Apple silicon

A Mac with Apple silicon is capable of running code compiled for the x86_64 instruction
set using a translation mechanism called Rosetta 2. There are two types of translation
offered: just in time and ahead of time.

Just-in-time translation

In the just-in-time (JIT) translation pipeline, an x86_64 Mach object is identified early in
the image execution path. When these images are encountered, the kernel transfers control
to a special Rosetta translation stub rather than to the dynamic link editor, dy1ld(1).

The translation stub then translates x86_64 pages during the image's execution. This
translation takes place entirely within the process. The kernel still verifies the code hashes
of each x86_64 page against the code signature attached to the binary as the page is
faulted in. In the event of a hash mismatch, the kernel enforces the remediation policy
appropriate for that process.

60

Apple Platform Security

Ahead-of-time translation

In the ahead-of-time (AOT) translation path, x86_64 binaries are read from storage at
times the system deems optimal for responsiveness of that code. The translated artefacts
are written to storage as a special type of Mach object file. That file is similar to an
executable image, but it's marked to indicate it's the translated product of another image.

In this model, the AOT artefact derives all of its identity information from the original
x86_64 executable image. To enforce this binding, a privileged userspace entity signs the
translation artefact using a device-specific key that's managed by the Secure Enclave. This
key is released only to the privileged userspace entity, which is identified as such using

a restricted entitlement. The code directory created for the translation artefact includes
the code directory hash of the original x86_64 executable image. The signature on the
translation artefact itself is known as the supplemental signature.

The AQOT pipeline begins similarly to the JIT pipeline, with the kernel transferring control

to the Rosetta runtime rather than to the dynamic link editor, dyld(1). But the Rosetta
runtime then sends an inter-process communication (IPC) query to the Rosetta system
service, which asks whether there’s an AOT translation available for the current executable
image. If found, the Rosetta service provides a handle to that translation and it's mapped
into the process and executed. During execution, the kernel enforces the code directory
hashes of the translation artefact which are authenticated by the signature rooted in the
device-specific signing key. The original x86_64 image's code directory hashes aren't
involved in this process.

Translated artefacts are stored in a Data Vault which isn’t running time-accessible by any
entity except for the Rosetta service. The Rosetta service manages access to its cache by
distributing read-only file descriptors to individual translation artefacts; this limits access
to the AOT artefact cache. This service's inter-process communication and dependent
footprint are kept intentionally very narrow to limit its attack surface.

If the code directory hash of the original x86_64 image doesn’t match with the one
encoded into the AOT translation artefact's signature, this result is considered the
equivalent of an invalid code signature, and appropriate enforcement action is taken.

If a remote process queries the kernel for the entitlements or other code identity properties
of an AOT-translated executable, the identity properties of the original x86_64 image are
returned to it.

Static trust cache content

macOS 11 or later ships with Mach “fat” binaries that contain slices of x86_64 and arm64
computer code. On a Mac with Apple silicon, the user may decide to execute the x86_64
slice of a system binary through the Rosetta pipeline — for example, to load a plug-in that
has no native arm64 variant. To support this approach, the static trust cache that ships
with macOS generally contains three code directory hashes per Mach object file:

- A code directory hash of the arm64 slice
- A code directory hash of the x86_64 slice

- A code directory hash of the AOT translation of the x86_64 slice

61

Apple Platform Security

The Rosetta AOT translation procedure is deterministic in that it reproduces identical
output for any given input, irrespective of when the translation was performed or on what
device it was performed.

During the macOS build, every Mach object file is run through the Rosetta AOT translation
pipeline associated with the version of macOS being built and the resulting code directory
hash is recorded into the trust cache. For efficiency, the actual translated products

don’t ship with the operating system and are reconstituted on demand when the user
requests them.

When an x86_64 image is being executed on a Mac with Apple silicon, if that image’s code
directory hash is in the static trust cache, the resulting AOT artefact’s code directory hash
is also expected to be in the static trust cache. Such products aren’'t signed by the device-
specific key because the signing authority is rooted in the Apple secure boot chain.

Unsigned x86_64 code

A Mac with Apple silicon doesn’t permit native arm64 code to execute unless a valid
signature is attached. This signature can be as simple as an ad hoc code signature
(cf. codesign (1)) that doesn’t bear any actual identity from the secret half of an
asymmetric key pair (it's simply an unauthenticated measurement of the binary).

For binary compatibility, translated x86_64 code is permitted to execute through Rosetta
with no signature information at all. No specific identity is conveyed to this code through
the device-specific Secure Enclave signing procedure, and it executes with precisely the
same limitations as native unsigned code executing on an Intel-based Mac.

Direct memory access protections for Mac computers

To achieve high throughput on high-speed interfaces like PCle, FireWire, Thunderbolt and
USB, computers must support direct memory access (DMA) from peripherals. That is, they
must be able to read and write to RAM without continuous involvement of the CPU. Since
2012, Mac computers have implemented numerous technologies to protect DMA, resulting
in the best and most comprehensive set of DMA protections on any PC.

Direct memory access protections for a Mac with Apple silicon

Apple systems on chip contain an Input/Output Memory Management Unit (IOMMU) for
each DMA agent in the system, including PCle and Thunderbolt ports. Because each
IOMMU has its own set of address translation tables to translate DMA requests, peripherals
connected by PCle or Thunderbolt can access only memory that has been explicitly
mapped for their use. Peripherals can’t access memory belonging to other parts of the
system — such as the kernel or firmware memory assigned to other peripherals. If an
IOMMU detects an attempt by a peripheral to access memory that isn't mapped for that
peripheral’s use, it triggers a kernel panic.

62

Apple Platform Security

Direct memory access protections for an Intel-based Mac

Intel-based Mac computers with Intel Virtualization Technology for Directed I/O (VT-d)
initialise the IOMMU, enabling DMA remapping and interrupt remapping very early in the
boot process to mitigate various classes of security vulnerabilities. The Apple IOMMU
hardware begins operation with a default-deny policy, so the instant the system is powered
on, it automatically begins blocking DMA requests from peripherals. After being initialised
by software, the IOMMUs begin allowing DMA requests from peripherals to memory regions
that have been explicitly mapped for their use.

Note: Interrupt remapping for PCle isn't necessary on a Mac with Apple silicon because
each IOMMU handles MSIs for its own peripherals.

Starting in macOS 11, all Mac computers with an Apple T2 Security Chip run UEFI drivers
that facilitate DMA in a restricted ring 3 environment when these drivers are pairing with
external devices. This property helps mitigate security vulnerabilities that may occur
when a malicious device interacts with a UEFI driver in an unexpected way at boot time.
In particular, it reduces the impact of vulnerabilities in a driver’'s handling of DMA buffers.

Kernel extensions in macOS

Starting with macOS 11, if third-party kernel extensions (kexts) are enabled, they can't

be loaded into the kernel on demand. Instead, they're merged into an Auxiliary Kernel
Collection (AuxKC), which is loaded during the boot process. For a Mac with Apple silicon,
the measurement of the AuxKC is signed in to the LocalPolicy (for previous hardware, the
AuxKC resided on the data volume). Rebuilding the AuxKC requires the user's approval and
restarting of the macOS to load the changes into the kernel, and it requires that the secure
boot be configured to Reduced Security.

Important: Kexts are no longer recommended for macOS. Kexts risk the integrity and
reliability of the operating system and Apple recommends users select solutions that don't
require extending the kernel.

Kernel extensions in a Mac with Apple silicon

Kexts must be explicitly enabled for a Mac with Apple silicon by holding the power button
at startup to enter into One True Recovery (1TR) mode, then downgrading to Reduced
Security and ticking the box to enable kernel extensions. This action also requires entering
an administrator password to authorise the downgrade. The combination of the 1TR and
password requirement makes it difficult for software-only attackers starting from within
macOS to inject kexts into macOS, which they can then exploit to gain kernel privileges.

After a user authorises kexts to load, the above User-Approved Kernel Extension Loading
flow is used to authorise the installation of kexts. The authorisation used for the above
flow is also used to capture an SHA384 hash of the user-authorised kext list (UAKL) in the
LocalPolicy. The kernel management daemon (kmd) is then responsible for validating only
those kexts found in the UAKL for inclusion into the AuxKC.

- If System Integrity Protection (SIP) is enabled, the signature of each kext is verified
before being included in the AuxKC.

- If SIP is disabled, the kext signature isn't enforced.

This approach allows Permissive Security flows for developers or users who aren’t part of
the Apple Developer Programme to test kexts before they are signed.

63

After the AuxKC is created, its measurement is sent to the Secure Enclave to be signed
and included in an Image4 data structure that can be evaluated by iBoot at startup. As part
of the AuxKC construction, a kext receipt is also generated. This receipt contains the list
of kexts that were actually included in the AuxKC, because the set could be a subset of
the UAKL if banned kexts were encountered. An SHA384 hash of the AuxKC Image4 data
structure and the kext receipt are included in the LocalPolicy. The AuxKC Image4 hash is
used for extra verification by iBoot at startup to help ensure that it isn't possible to start
up an older Secure Enclave-signed AuxKC Image4 file with a newer LocalPolicy. The kext
receipt is used by subsystems such as Apple Pay to determine whether there are any kexts
currently loaded that could interfere with the trustworthiness of macOS. If there are, then
Apple Pay capabilities may be disabled.

Alternatives to kexts (macOS 10.15 or later)

macOS 10.15 allows developers to extend the capabilities of macOS by installing and
managing system extensions that run in user space rather than at the kernel level. By
running in user space, system extensions increase the stability and security of macOS. Even
though kexts inherently have full access to the entire operating system, extensions running
in user space are granted only the privileges necessary to perform their specified function.

Developers can use frameworks, including DriverKit, EndpointSecurity and NetworkExtension,
to write USB and human interface drivers, endpoint security tools (like data loss prevention
or other endpoint agents), and VPN and network tools, all without needing to write kexts.
Third-party security agents should be used only if they take advantage of these APIs or
have a robust road map to transition to them and away from kernel extensions.

User-Approved Kernel Extension Loading

To improve security, user consent is required to load kernel extensions installed with or
after installing macOS 10.13. This process is known as User-Approved Kernel Extension
Loading. Administrator authorisation is required to approve a kernel extension. Kernel
extensions don't require authorisation if they:

- Were installed on a Mac when using macOS 10.12 or earlier
- Are replacing previously approved extensions

- Are allowed to load without user consent by using the spctl command-line tool
available when a Mac was booted from recoveryOS

- Are allowed to load using mobile device management (MDM) configuration

Starting with macOS 10.13.2, users can use MDM to specify a list of kernel extensions
that load without user consent. This option requires a Mac with macOS 10.13.2 that's

enrolled in MDM — through Apple School Manager, Apple Business Manager or MDM

enrolment done by the user.

Apple Platform Security 64

Apple Platform Security

Option ROM security in macOS

Note: Option ROMs aren't currently supported on a Mac with Apple silicon.

Option ROM security in a Mac with the Apple T2 Security Chip

Both Thunderbolt and PCle devices can have an "Option ROM (OROM)" physically attached
to the device. (This is typically not a true ROM but is instead a rewritable chip that stores
firmware.) On UEFI-based systems, that firmware is typically a UEFI driver which is read

in by the UEFI firmware and executed. The executed code is supposed to initialise and
configure the hardware it was retrieved from, so that the hardware can be made usable by
the rest of the firmware. This capability is required so that specialised third-party hardware
can load and operate during the earliest startup phases — for example, to start up from
external RAID arrays.

However, because OROMs are generally rewritable, if an attacker overwrites the OROM of a
legitimate peripheral, the attacker’s code executes early in the boot process and is able to
tamper with the execution environment and violate the integrity of software that's loaded
later. Likewise, if the attacker introduces their own malicious device to the system, they're
also able to execute malicious code.

In macOS 10.12.3, the behaviour of Mac computers sold after 2011 was changed to not
execute OROMs by default at the time the Mac booted unless a special key combination
was pressed. This key combination protected against malicious OROMs being inadvertently
introduced into the macOS boot sequence. The default behaviour of the Firmware
Password Utility was also changed so that when the user set a firmware password, OROMs
couldn’t execute even if the key combination was pressed. This protected against a
physically present attacker intentionally introducing a malicious OROM. For users who still
need to run OROMs while they have a firmware password set, a non-default option can be
configured using the firmwarepasswd command-line tool in macOS.

65

Apple Platform Security

OROM sandbox security

In macOS 10.15, UEFI firmware was updated to contain a mechanism for sandboxing
OROMSs and for stripping privileges from them. UEFI firmware typically executes all code,
including OROMs, at the maximum CPU privilege level, called ring 0, and has a single
shared virtual memory space for all code and data. Ring O is the privilege level where the
macOS kernel runs, whereas the lower privilege level, ring 3, is where apps run. The OROM
sandbox de-privileged OROMs by making use of virtual memory separation like the kernel
does and then making the OROMSs run in ring 3.

Virtual memory Virtual memory Virtual memory
space 1 space 2 space 3
Ring 3 OROM 1 OROM 2 OROM 3
(less privileged)
“I'm a storage “I'm a network “I'm a
driver (for card 1)” driver (for card 1)” secure boot driver”
@ ® OROM sandbox driver ®
Ring O Non-sandboxed UEFI drivers

(more privileged)

Core UEFI firmware

x86 CPU
Hardware
(more privileged)

PCle card 1 PCle card 2 PCle card 3

The sandbox further significantly restricts both the interfaces that the OROMs can call
(much like system call filtering in kernels) and the type of device that an OROM can
register as (much like app approval). The benefit of this design is that malicious OROMs
can no longer directly write anywhere within ring O memory. Instead, they are limited to a
very narrow and well-defined sandbox interface. This limited interface significantly reduces
attack surface and forces attackers to first escape the sandbox and escalate privilege.

66

UEFI firmware security in an Intel-based Mac

An Intel-based Mac with an Apple T2 Security Chip offers security using UEFI (Intel) firmware.

Overview

Since 2006, Mac computers with an Intel-based CPU use an Intel firmware based on the
Extensible Firmware Interface (EFl) Development Kit (EDK) version 1 or version 2. EDK2-
based code conforms to the Unified Extensible Firmware Interface (UEFI) specification.
This section refers to the Intel firmware as the UEFI firmware. The UEFI firmware was the
first code to execute on the Intel chip.

For an Intel-based Mac without the Apple T2 Security Chip, the root of trust for the UEFI
firmware is the chip where the firmware is stored. UEFI firmware updates are digitally
signed by Apple and verified by the firmware before updating the storage. To help prevent
rollback attacks, updates must always have a version newer than the existing one. However,
an attacker with physical access to the Mac could potentially use hardware to attach to

the firmware storage chip and update the chip to contain malicious content. Likewise,

if vulnerabilities are found in the early boot process of the UEFI firmware (before it write-
restricts the storage chip), this could also lead to persistent infection of the UEFI firmware.
This is a hardware architectural limitation common in most Intel-based PCs and present in
all Intel-based Mac computers without the T2 chip.

To help prevent physical attacks that subvert UEFI firmware, Mac computers were
rearchitected to root the trust in the UEFI firmware in the T2 chip. On these Mac
computers, the root of trust for the UEFI firmware is specifically the T2 firmware, as
described in Boot process for an Intel-based Mac.

Intel Management Engine (ME) subcomponent

One subcomponent stored within the UEFI firmware is the Intel Management Engine (ME)
firmware. The ME — a separate processor and subsystem within Intel chips — is used
primarily for audio and video copyright protection on a Mac that has only Intel-based
graphics. To reduce this subcomponent’s attack surface, an Intel-based Mac runs a custom
ME firmware from which most components have been removed. Because the resulting

Mac ME firmware is smaller than the default minimal build that Intel makes available, many
components that have been the subject of public attacks by security researchers in the
past are no longer present.

System Management Mode (SMM)

Intel processors have a special execution mode that's distinct from normal operation.
Called System Management Mode (SMM), it was originally introduced to handle time-
sensitive operations such as power management. However, to perform such actions, Mac
computers have historically used a discrete microcontroller called the System Management
Controller (SMC). No longer a separate microcontroller, the SMC has been integrated into
the T2 chip.

Apple Platform Security 67

Apple Platform Security

System security for watchOS

Apple Watch uses many of the same hardware-based platform security capabilities that
iOS and iPadOS use. For example, Apple Watch:

- Performs secure boot and secure software updates
- Maintains operating system integrity

+ Helps protect data — both on the device and when communicating with a paired iPhone
or the internet

Supported technologies include those listed in System Security (for example, KIP, SKP and
SCIP) as well as Data Protection, keychain and network technologies.

Updating watchOS

watchOS can be configured to update overnight. For more information on how the
Apple Watch passcode gets stored and used during the update, see Keybags.

Wrist detection

If wrist detection is enabled, the device locks automatically soon after it's removed from
the user's wrist. If wrist detection is disabled, Control Centre provides an option for locking
Apple Watch. When Apple Watch is locked, Apple Pay can be used only by entering the
passcode on the Apple Watch. Wrist detection is turned off using the Apple Watch app on
iPhone. This setting can also be enforced using a mobile device management (MDM) solution.

Activation Lock

When Find My is turned on on iPhone, its paired Apple Watch can use Activation Lock.
Activation Lock makes it harder for anyone to use or sell an Apple Watch that's been lost
or stolen. Activation Lock requires the user's Apple ID and password to unpair, erase or
reactivate an Apple Watch.

Secure pairing with iPhone

Apple Watch can be paired with only one iPhone at a time. When Apple Watch is unpaired,
iPh